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The resonant x-ray scattering (magnetic elastic, RXMS, and inelastic, RIXS) of Ir4þ at the L2;3 edges
relevant to spin-orbit Mott insulators Anþ1IrnO3nþ1 (A ¼ Sr, Ba, etc.) are calculated using a single-ion
model which treats the spin-orbit and tetragonal crystal-field terms on an equal footing. Both RXMS and
RIXS in the spin-flip channel are found to display a nontrivial dependence on the direction of the magnetic
moment, μ. Crucially, we show that for μ in the ab plane, RXMS in the cross-polarized channel at the L2

edge is zero irrespective of the tetragonal crystal field; spin-flip RIXS, relevant to measurements of
magnons, behaves reciprocally, being zero at L2 when μ is perpendicular to the ab plane. Our results have
important implications for the assignment of a jeff ¼ 1=2 ground state on the basis of resonant x-ray
experiments.
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The existence of a Mott-like insulating ground state
for specific members of the Ruddleseden-Popper series
of iridate perovskites Anþ1IrnO3nþ1 (A ¼ Sr, n ¼ 1, 2;
A ¼ Ba, n ¼ 1; A ¼ Ca, n ¼ ∞) has stimulated intense
interest [1–7]. Common wisdom had held that metallic
ground states should be displayed ubiquitously by 5d
compounds due to the weakening of the onsite Coulomb
repulsion U and the broadening of the bandwidth W, both
resulting from the extended nature of the 5d orbitals. It has
been proposed, however, that for Ir4þ (5d5) the strong spin-
orbit coupling (SOC) present produces a jeff ¼ 1=2 ground
state upon which even a moderate U can act to open a gap,
hence leading to the formation of an insulating state [1,2].
While such spin-orbit Mott insulators are of interest in
their own right, further impetus for their study comes from
their structural similarities to high-Tc cuprate supercon-
ductors, and not least the prediction that they may form new
families of superconductors [8,9].
Since the jeff ¼ 1=2 ground state is actually an

idealization—realized in perfect cubic symmetry only—
of pivotal importance is the need to understand the robust-
ness of this state to noncubic structural distortions found
in real materials. This issue has been addressed through
various experimental probes, including optical absorption,
angle-resolved photo emission, x-ray absorption, etc. [1,2].
One technique that has played a particularly prominent
role in this endeavor is resonant x-ray magnetic scattering
(RXMS), following the seminal work of Kim et al. [3] on
Sr2IrO4, who argued that the near vanishing of the RXMS
intensity at the L2 edge first observed in their experiments

was directly related to the existence of a jeff ¼ 1=2 ground
state. Although doubts have been raised concerning this
interpretation [5,10], others have followed the spirit of
Kim et al. and invoked the L2=L3 RXMS intensity ratio as
a proxy for the full understanding of the electronic structure
[6,7,11–14]. This has lead to some unexpected conclusions,
including the fact that a jeff ¼ 1=2 ground state is appa-
rently realized inBa2IrO4 [7] even though the IrO6 octahedra
have a tetragonal distortion almost twice as large as that in
Sr2IrO4 [15]. Moreover, in bilayer Sr3Ir2O7 the magnetic
moments undergo an unusual reorientation transition to
point perpendicular to the basal plane order displayed by
the n ¼ 1 “214” counterparts, while at the same time they
display a L2=L3 RXMS intensity ratio no larger than that of
the n ¼ 1 compounds [12,13,16].
There is thus a clear need to elucidate fully the relation-

ship between the L2=L3 RXMS intensity ratio, the direction
of the magnetic moment, and the presence or otherwise of a
jeff ¼ 1=2 ground state. To this end we utilize a single-ion
model which allows us to treat the SOC ζ and a tetragonal
crystal field Δ on an equal footing [6,17–19]. This model
has been chosen for the direct physical insight it provides.
We use it to explore both RXMS, and the RIXS in the spin-
flip channel. This latter channel has recently been exploited
in various iridates to yield full magnon dispersion curves
across the entire Brillouin zone [20,21]: information that
was previously the exclusive province of neutron spectros-
copy. We focus in particular on the explicit dependence
of the x-ray scattering on the direction of the local Ir4þ
magnetic moment, μ. Results are shown for realistic values
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of ζ and Δ, as extracted from experiments [18,19,22,23].
Our main finding is that both the RXMS and RIXS in the
spin-flip channel display a nontrivial dependence on the
direction of μ. We show that the L2 edge RXMS intensity in
the cross-polarized channel is identically zero for magnetic
moments lying in the ab plane, irrespective of the tetrago-
nal crystal field splitting of the t2g states, in agreement with
the symmetry arguments of Ref. [10]. This has important
consequences when using RXMS to assign the jeff ¼ 1=2
ground state for systems in which the magnetic moments
lie in the ab plane such as the A2IrO4 (A ¼ Sr and Ba)
compounds [3,7]. Our results are discussed with reference
to existing experimental data, and consideration given to
their implications for future work.
The calculation method adopted here for Ir4þ follows

along similar lines to that in Refs. [24,25] forL2;3 edge RIXS
in Cu2þ cuprates (one-hole eg systems). For Ir4þ we limit
ourselves to the subspace of t2g states, setting aside the eg
states, justified by the large octahedral crystal field splitting
(10Dq ∼ 3 eV [26,27]), which for the 5d5 configuration of
Ir4þ produces a single hole in the t2g states, and the hierarchy
of energy scales at play,Δ ≪ ζ ≪ 10Dq. Iridates can thus be
thought of as one-hole t2g systems: dealing with one-particle
systems greatly simplifies the calculations, as particle-
particle interactions are zeroed, and expressions for
one-particle ground and excited states wave functions are
readily derived. Resonant x-ray scattering amplitudes are
then calculated considering intra-ion transitions. The
assumption of considering the subspace spanned by the t2g
states only is further justified by the observation in IrL3 edge
RXMS and RIXS that the magnetic elastic andmagnetic and
spin-orbit excitations resonate at ∼10Dq lower energy than
the main absorption line [11,18], indicating that they origi-
nate from initial 2p → 5d transitions into the same unoccu-
pied states within the Ir t2g manifold [18].
The Hamiltonian acting on the 5d t2g states relevant to

irididate perovskites is written as [6,17–19]

H ¼ ζL · S − ΔhLzi2: (1)

For negligible SOC (ζ ¼ 0), its eigenstates are the familiar
jxy;�i, jyz;�i, and jzx;�i orbitals, where � refers to
the spin. In the case of iridium, however, SOC can be as
large as 0.45 eV [28], and therefore cannot be neglected.
For negligible tetragonal crystal field, i.e., for Δ ¼ 0, the
ground state of the system is the so-called jjeff ¼ 1=2i state
described below. At intermediate couplings, the eigenstates
ofH are three Kramers doublets, which we write as j0;�i,
j1;�i, and j2;�i.
An essential prerequisite for calculating the resonant

x-ray scattering amplitudes is to determine the eigenvalues
and eigenfunctions of Eq. (1), which for completeness we
present here. The eigenvalues (see Supplemental Material
[29]) are shown in Fig. 1(a) for ζ ¼ 0.45 eV (as extracted
from experiments [18,22,23]) and realistic values of Δ,
i.e., jΔj < 1 eV [18,19,23]. With five electrons filling the

three doublets, one hole is left in the, say, j0;−i state, which
is, therefore, the ground state of the system in the hole rep-
resentation. The corresponding wave function is written as

j0;−ic ¼ C0jxy;−i þ jyz;þi − ıjzx;þiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ C2

0

p (2)

for μ∥ð001Þ, and

j0;−iab ¼C0ðjxy;þi−ıjxy;−iÞ= ffiffiffi
2

p þjyz;þiþ ı jzx;−iffiffiffiffiffiffiffiffiffiffiffiffiffi
2þC2

0

p

(3)

FIG. 1 (color online). Δ dependence of (a) eigenvalues
of Eq. (1) (blue lines), (b) the ground state orbital occupancies
of the jxy;−i (red), jyz;þi (green), and jzx;þi (yellow line)
states, and (c) the expectation values of the orbital (hLzi, blue),
spin (hSzi, purple) and total (hμzi, green) magnetic moment
components along z in units of μB, and expectation value of the
angular part of the spin orbit coupling (hL · Si, yellow line) in
units of h̄2. The continuous blue line in panel (a) represent the
ground state energy in the hole representation. The corresponding
wave function [according to Eq. (2)] is represented at the top:
blue and orange represent the contributions of the jxy;−i and
ðjyz;þi − ıjzx;þiÞ= ffiffiffi

2
p

states, respectively. The shaded area in
all panels represents the range of Δ values, for which the L2=L3

RXMS intensity ratio is smaller than 0.01 (see Fig. 2).
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for μ∥ð110Þ, respectively, where 2C0¼δ−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þδðδ−2Þp

and δ ¼ 2Δ=ζ. We mostly focus on μ∥ð001Þ and μ∥ð110Þ,
as these are the cases for Sr3Ir2O7 and A2IrO4 (A ¼ Sr and
Ba), respectively. It has to be stressed here that the expression
of jjeff ¼ 1=2i is different in the two cases μ∥ð001Þ
and μ∥ð110Þ.
At the top of Fig. 1, a real-space representation is given of

j0;−ic as a function of Δ: the well-known “cubic” shape
of the jjeff ¼ 1=2i wave function is evident for Δ ¼ 0. At
finite values of Δ, the admixture of orbital contributions
changes: in particular, in the limit forΔ ≫ ζ, theground state
reduces to the jxy;−i,while it reads ðjyz;þi − ıjzx;þiÞ= ffiffiffi

2
p

forΔ ≪ −ζ. This is also seen in Fig. 1(b), where the relative
orbital occupancy is shown: this is the same for the three
orbitals, i.e., ð1= ffiffiffi

3
p Þ2 ¼ 1=3, atΔ ¼ 0. Figure 1(c), finally,

shows the Δ dependence of the expectation values of the
orbital (hLzi, blue), spin (hSzi, purple), and total (hμzi,
green) magnetic moment components along z, for μ∥ð001Þ.
Note that hμzi ¼ 1 forΔ ¼ 0 and hμzi ¼ 0 forΔ ¼ ζ. TheΔ
dependence of the expectation value of the spin orbit
coupling operator (hL · Si, yellow line) is also shown to
reach a maximum of 1 at Δ ¼ 0, as expected. It should be
stressed that the quantities shown in Figs. 1(a) and (b),
together with the expectation value hL · Si in Fig. 1(c),
are independent of the magnetic moment orientation (see
Supplemental Material [29]).
Having obtained the eigenvalues and eigenfunctions of

Eq. (1) we now proceed to the main task of calculating the
required resonant x-ray scattering amplitudes. RIXS is a
second-order process described by the Kramers-Heisenberg
(KH) formula:

Aϵϵ0
jf;�i ¼

X

n

hf;�jD†
ϵ0 jnihnjDϵj0;−i

E0 − En þ ℏωþ ıΓn
(4)

is the scattering amplitude from the ground state, j0;−i
(of energy E0) to the final states jf;�i (f ¼ 0,1 ,2 energy
Ef). n runs over all the intermediate states of energy En and
intrinsic linewidth Γn. Dϵ (D

†
ϵ0 ) is the absorption (emission)

transitionoperator,where ϵ (ϵ0) defines the polarization of the
incoming (outgoing)photons.At resonance (ℏω ≈ E0 − En),
this is the leading term in the RIXS cross section and the
only one considered here. For a given edge (En ¼ E), we
assume Γn ¼ Γ and the expression of the atomic form factor
simplifies to Aϵϵ0

jf;�i ∝
P

nhf;�jD†
ϵ0 jnihnjDϵj0;−i.

To calculate the matrix elements of the resonant scatter-
ing amplitudes, we use the atomic wave functions derived
within the single ion model, and restrict ourselves to the
case of dipolar transitions. The scattering geometry
(sketched in the Supplemental Material [29]) is defined
through the azimuthal θ (θ0), and polar ϕ (ϕ0) angles of the
incident (scattered) photon wave vector k (k0) in the sample
reference system. The polarization ϵ (ϵ0) of the incident
(scattered) photon is projected on a two-vector basis,
perpendicular (σ) and parallel (π) to the scattering plane.

The resonant elastic x-ray scattering amplitude (REXS)
is obtained in the special case that jf;�i≡ j0;−i. For a
crystal, the REXS cross section in general is proportional to
jF ϵϵ0 ðQÞj2, where F ϵϵ0 ðQÞ is the unit cell structure factor,
and Q ¼ k0 − k. For the specific case of antiferrromag-
netic order considered here, the RXMS structure factor
is derived as a sum over two sublattices (A and B, say),
so that

F ϵϵ0 ðQÞ ¼ fϵϵ
0

A

X

A

e ıQ·rA þ fϵϵ
0

B

X

B

e ıQ·rB ; (5)

with fϵϵ
0

A ¼ Aϵϵ0
j0;−i ¼ −fϵϵ0B , rA (rB) the position of the A (B)

atom within the magnetic unit cell, and Q ¼ QAF, the
antiferromagnetic propagation wave vector.
We now consider the RXMS intensity branching ratio in

the cross-polarized channel, as this is the quantity, readily
measured in experiments, which has been mostly used to
infer the existence of a jeff ¼ 1=2 ground state in various
iridate perovskites. With μ∥ð001Þ the REXS scattering
amplitudes at the L2 edge are given byAσπ

j0;−i¼ ıðC0−1Þ2×
cosθ0L2

=ð2þC2
0Þ and Aπσ

j0;−i¼−ıðC0−1Þ2 cosθL2
=ð2þC2

0Þ,
while at the L3 edge these read Aσπ

j0;−i ¼−ı½C0ðC0−
2Þ−2� cos θ0L3

=ð2þC2
0Þ and Aπσ

j0;−i ¼ ı½C0ðC0 − 2Þ−
2� cos θL3

=ð2þ C2
0Þ. Given the scattering amplitudes and

the atomic positions within the unit cell, the RXMS intensity
branching ratio is given by

cos2θ0L3

cos2θ0L2

jF σπ
L2
j2

jF σπ
L3
j2 ¼

cos2θL3

cos2θL2

jF πσ
L2
j2

jF πσ
L3
j2 ¼

ðC0 − 1Þ4
½C0ðC0 − 1Þ − 2�2 ;

(6)

where cos2θ0L3
=cos2θ0L2

(cos2θL3
=cos2θL2

) is a constant
factor in the order of unity, which includes the energy
dependence of the Bragg angles. The RXMS branching ratio
dependence on the tetragonal distortion is shown in Fig. 2
[blue curve in (a)] for ζ ¼ 0.45 eV, and is consistent with
previous calculations with μ∥ð001Þ [13], relevant to the case
of Sr3Ir2O7. The calculated branching ratio drops to zero for
Δ ¼ 0, while it diverges for Δ ¼ 3ζ=2. In the limit for
Δ ≫ ζ, the ratio tends to unity, and to 1=4 for Δ ≪ −ζ. It
was claimed that the experimental ratio of at most 1%
provides the lower and upper bounds for nearly pure jeff ¼
1=2 ground state. We note, however, that these bounds
correspond to a relatively large energy window in Δ
(−0.61 eV < Δ < 0.27 eV), for which the ground state
may deviate considerably from the pure jeff ¼ 1=2 state, as
seen in the substantial change of the shape of the ground state
wave function, of theorbital occupancy (0.1 < jxyj2 < 0.54),
andof theexpectationvaluesofhLzi,hSzi, andhL · Si (Fig.1).
Figure 2(a) also shows the dependence of the RXMS

branching ratio on the direction of μ, defined through the θμ
angle (μ∥ð001Þ for θμ ¼ 0, while μ∥ð110Þ for θμ ¼ 90°).
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When μ is progressively lowered into the basal plane, the
divergence in the ratio moves towards higher values of Δ,
and eventually disappears for θμ ¼ 90°. Consequently, for
magnetic moments lying in the ab plane, the L2 edge
RXMS intensity in the cross-polarized channel is identi-
cally zero, irrespective of the tetragonal crystal field
splitting of the t2g states. [This can be traced to the fact
that for μ∥ð110Þ, Aσπ

j0;−i ¼ Aπσ
j0;−i ≡ 0, a consequence of

the particular coherent superposition of states in Eq. (3)].
Note that the RXMS intensity in the ππ channel is strictly
zero only for Δ ¼ 0, with no dependence on μ [Fig. 2(b)].
However, as most XRMS experiments measure the cross-
polarized channel (to reduce the background from charge
scattering, etc), this is an important result as it implies that
the jeff ¼ 1=2 ground state cannot be in general inferred
by the L2L3 RXMS intensity ratio for arbitrary magnetic
moment orientations [6,7,30].
We have also calculated the RIXS amplitudes associated

with transitions to excited states within the 5d t2g manifold.
Here we focus on the “spin-flip” channel from the j0;−i
ground state to the j0;þi final state, pertinent to the
interpretation of experiments that have successfully
observed magnons. In Fig. 3 we report the L2=L3 spin-
flip intensity ratio as a function of Δ (for ζ ¼ 0.45 eV).
Remarkably, it is seen that the dependence on the direction
of μ is opposite to that of RXMS: the ratio is identically
zero for magnetic moments along the c axis, irrespective of

the tetragonal crystal field splitting, while for all other μ
orientations it drops to zero only for Δ ¼ 0, i.e., when the
jeff ¼ 1=2 ground state is realized. In this case, there is no
contribution to the RIXS intensity in the noncrossed-
polarized channel, leaving no ambiguity on the assignment
of the jeff ¼ 1=2 ground state.
It remains to consider the extent to which the salient

results of our calculations may be altered by the inclusion
of additional effects, such as the eg states, electronic band
formation, many-body interactions, etc. Although these
will all no doubt affect the quantitative dependences on θμ
and Δ shown in Figs. 2 and 3, we nevertheless expect the
qualitative features of our results to remain unchanged. The
reason is that ultimately, effects such as the extinguishing
of the RXMS L2 intensity for θμ ¼ 90°, depend on the
symmetry of the 5d wave function which partially persists
into the solid. When comparing with the results of
RXMS experiments, it should be appreciated that with
the limited energy resolution usually employed (∼1 eV)
what is actually measured is the sum of elastic plus partially
integrated inelastic responses. Thus, the differences exhib-
ited by the Sr and Ba 214 compounds—the L2 intensity
being small and finite in the former and zero in the latter—
could be related to the detailed differences of the excitation
spectra for the two systems.
In conclusion, we have developed a single-ion model

relevant to the iridate perovskites by which we are able to
understand how the results of resonant x-ray elastic and
inelastic scattering experiments relate to their underlying
electronic structure. The results of our calculations reveal
the full complexity of the relationship between ζ, Δ, and θμ
in determining the RXMS and RIXS cross sections at the
L2 and L3 edges.
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FIG. 3 (color online). Ratio of the L2=L3 spin-flip intensity
ratio in the crossed-polarized channel as a function of the
tetragonal crystal field splitting Δ ranging from −1 to 1 eV, for
a given value of the SOC constant (ζ ¼ 0.45 eV). Different line
styles correspond to values of θμ from 90 to 0° in steps of 15°.
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(b)

FIG. 2 (color online). (a) L2=L3 RXMS intensity ratio in the
crossed-polarized channel as a function of the tetragonal crystal
field splitting Δ ranging from −1 to 1 eV, for a given value of the
SOC constant (ζ ¼ 0.45 eV). Different line styles correspond to
values of θμ from 0° to 90° in steps of 15°. (b) L2=L3 RXMS
intensity ratio in the ππ polarization channel, which is indepen-
dent of the moment direction.
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