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We study the orbital susceptibility of multiband systems with a pair of Dirac points interpolating
between honeycomb and dice lattices. Despite having the same zero-field energy spectrum, these different
systems exhibit spectacular differences in their orbital magnetic response, ranging from dia- to
paramagnetism at Dirac points. We show that this striking behavior is related to a topological Berry
phase varying continuously from π (graphene) to 0 (dice). The latter strongly constrains interband effects,
resulting in an unusual dependence of the magnetic response also at finite doping.
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Introduction.—Among the fascinating electronic proper-
ties of graphene, orbital magnetism is certainly one of the
least studied experimentally [1]. This is due to the difficulty
of measuring the magnetic response of such a thin solid [2].
Theoretically, it has long been known that undoped
graphene should be strongly diamagnetic [3]. This behavior
was attributed to the response of Dirac-Weyl fermions
which properly describe the low energy electronic proper-
ties of graphene. Here, we show that another simple system
also featuring massless fermions, the so-called dice (or T 3)
lattice [4,5], surprisingly presents a huge paramagnetic
response in a magnetic field. These two systems have the
same zero field energy spectrum [see Fig. 1(b)] but exhibit
opposite magnetic behaviors (see Fig. 2) not only at zero
doping but also in a whole energy range between the two
van Hove singularities, where interband effects are impor-
tant. To shed light on these surprising features, we study
a lattice model which interpolates between graphene and
dice lattices. We show that the continuous evolution of the
magnetic response is associated to a Berry phase which,
although being here a topological quantity, is no more
quantized as in graphene, but varies continuously between
π and 0.
The honeycomb (graphene) and the dice lattices are

examples of electronic systems featuring coupled energy
bands for which the Landau-Peierls (or single-band)
approach [6] fails to obtain the orbital susceptibility χ.
Here the band of itinerant electrons is made of two
subbands touching at two Dirac points. In the case of
graphene, by considering the vicinity of the Dirac points
where the spectrum is linear, McClure showed that the
magnetic field spectrum exhibits peculiar Landau levels
(LLs) [3]. Neglecting the contribution of the rest of the
band, he could derive a diamagnetic peak precisely at the
Dirac point, i.e., for zero doping, where Landau-Peierls
would predict a vanishing susceptibility. Later, Fukuyama
developed a linear response formalism that takes interband

effects into account [7]. This formalism has recently been
applied to the tight-binding model of graphene to calculate
χðμÞ where the chemical potential μ varies in the entire
band [8]. The divergence of the susceptibility at μ ¼ 0
appears as a δðμÞ peak, which is the signature of a
nonanalytic behavior of the grand potential as a function
of the magnetic field [9].
In order to get a better understanding of the fundamental

reason for this peculiar behavior, we study a modified tight-
binding model for spinless electrons hopping on the T 3

lattice, which we call α-T 3. Starting from the honeycomb
lattice with two sites (A, B) per unit cell and a hopping
amplitude t, the T 3 lattice is obtained by connecting
additional (C) sites at the center of each hexagon to the
B sites [see Fig. 1(a)] with a hopping amplitude αt.
Depending on the real parameter α, this model interpolates
between graphene (α ¼ 0) and the dice lattice (α ¼ 1).
Its interest is that the zero field spectrum (within a
trivial appropriate normalization) does not depend on α
[see Fig. 1(b)], while the zero field wave functions and the
finite field spectrum present a continuous evolution which
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FIG. 1 (color online). α-T 3 model. (a) T 3 lattice. Thick links:
nearest neighbors hoppings t between A and B sites forming a
honeycomb lattice. Thin links: additional hoppings αt connecting
C to B sites. Varying α interpolates between the honeycomb
lattice (α ¼ 0) and the dice lattice (α ¼ 1). (b) Zero field energy
spectrum as a function of the wave vector k for all α.
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may be described by an α-dependent Berry phase. Then, we
compute the low-energy LLs, from which we obtain the
low field dependence of the magnetization. By considering
different temperature limits, we explicitly show that the
magnetic response continuously evolves from a diamag-
netic to a paramagnetic behavior, when increasing α. We
finally present simple arguments to explain this spectacular
change of the orbital response, backup our low energy
analytical results by numerical calculations on the full
tight-binding model, show how the susceptibility is
affected in the whole band, and suggest an experimental
realization.

The α-T 3 model.—We first introduce a convenient
parametrization of α with the angle φ such that
tan φ≡ α. Because of the three sites per unit cell, the
Bloch Hamiltonian reads (after rescaling the energy
by cos φ [10]):

HðkÞ ¼

0
B@

0 fk cos φ 0

f�k cos φ 0 fk sin φ
0 f�k sin φ 0

1
CA; (1)

where fk ¼ −tð1þ e−ik:a1 þ e−ik:a2Þ, a1 ¼ að ffiffiffi
3

p
=2; 3=2Þ,

and a2 ¼ að− ffiffiffi
3

p
=2; 3=2Þ are Bravais lattice vectors

[Fig. 1(a)], a is the intersite distance, and the wave vector
k ¼ ðkx; kyÞ. The model has a α → 1=α duality and we
therefore restrict ourselves to α ∈ ½0; 1�. The correspond-
ing spectrum is independent of α and consists of three
bands, each of them carrying 1=3 of the states: a zero-
energy flat band ϵk;0 ¼ 0 and two dispersive bands

ϵk;λ ¼ λjfkj, with the band index λ ¼ �, see Fig. 1(b).
The latter are identical to the bands of graphene [1] and
feature two inequivalent contact points at the corners �K
of the hexagonal Brillouin zone, where fð�KÞ ¼ 0.
To distinguish these two contact points, we introduce a
valley index ξ ¼ �. Close to zero energy, linearization
near ξK gives fk ≃ vðξqx − iqyÞ where the velocity
v≡ 3ta=2, q ¼ k − ξK and we have set ℏ≡ 1. The low-
energy spectrum is therefore ϵq;0 ¼ 0 and ϵq;λ ¼ λvjqj and
electrons behave as massless fermions. The eigenvectors
in the whole Brillouin zone read

jψλi ¼
1ffiffiffi
2

p
 cos φeiθk

λ
sin φe−iθk

!
; jψ0i ¼

 sin φeiθk

0

− cos φe−iθk

!
;

(2)

where fk ¼ jfkjeiθk defines the angle θk and jψ0i corre-
sponds to the zero energy flat band. For any path encircling
a single valley, the finite energy bands are characterized
by a Berry phase ϕλ;ξ ¼ ξπ cos 2φ, while the flat band
has a Berry phase ϕ0;ξ ¼ −ξ2π cos 2φ≡ ξ4πsin2φ
(modulo 2π). Note that ϕ0;ξ þ

P
λϕλ;ξ ¼ 0,

P
ξϕλ;ξ ¼ 0

and
P

ξϕ0;ξ ¼ 0 as it should. It is remarkable that,
except for α ¼ 0 or 1, the Berry phase ϕλ;ξ is different
in the two valleys. To our knowledge, this is the first
example where Berry phases are topological but not
π quantized.

Dirac-Weyl Hamiltonians.—For α ¼ 0, the α-T 3 model is
simply that of graphene except for the additional zero
energy flat band originating from the uncoupled C atoms.
As this flat band is inert, we will refer to the 0-T 3 model
as graphene, notwithstanding the three sites per unit cell.
Close to each valley, the linearized Hamiltonian can be
written in the Dirac-Weyl formHξ ¼ vðξqxσx þ qyσyÞ⊕0,
where σx, σy are spin 1=2 Pauli matrices [1].
For α ¼ 1, the α-T 3 model is that of the usual dice

lattice [4]. In the vicinity of the contact points, the
Hamiltonian may be linearized in a Dirac-Weyl form as
Hξ ¼ vðξqxSx þ qySyÞ, similar to graphene except that Sx,
Sy are now spin 1 matrices [11]. The α-T 3 model therefore
provides a continuous interpolation between pseudospin
1=2 (α ¼ 0) and pseudospin 1 (α ¼ 1) massless fermions.
However, when α ≠ 0, 1, the model involves more than a
single pseudospin operator.

Landau level spectrum.—We now add a perpendicular
magnetic field B to study the evolution of the LL spectrum
with α. To do so, we restrict ourselves to the vicinity of the
contact points where the zero field spectrum is linear, that
is in an energy interval [−W, W] where W is a cutoff,
typically smaller than t. Performing the usual Peierls
substitution qx � iqy →

ffiffiffiffiffiffiffiffi
2eB

p
â†=â, that introduces ladder

operators such that ½â; â†� ¼ 1, the low-energy Hamiltonian
in the K valley becomes
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FIG. 2 (color online). (a) Numerically obtained orbital suscep-
tibility χ [in units of the Landau band edge value jχLj ¼
ð1=16πÞðe2ta2=ℏ2Þ] as a function of the chemical potential μ
(in units of t) in the whole band for various α as indicated and for
a temperature T ¼ 0.02t. Because of a sum rule discussed below,
the orbital response at zero doping is systematically compensated
by an opposite response at finite doping. (b) Susceptibility peak at
zero chemical potential as a function of the inverse temperature
for various α [same units as in (a)]. The slope is well fitted by
−3ζγð2Þ=ζð2Þ, in agreement with Eq. (11).
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Hþ ¼ ϵB

 
0 cos φâ 0

cos φâ† 0 sin φâ
0 sin φâ† 0

!
; (3)

where ϵB ≡ v
ffiffiffiffiffiffiffiffi
2eB

p
is a characteristic magnetic energy.

In the other (K0) valley, H− is obtained from Hþ by the
substitution â → −â†. The Landau spectrum in each valley
is given by ϵl;ξ ¼ �ϵB

ffiffiffiffiffiffiffiffiffiffiffiffi
lþ γξ

p
, where l ∈ N is the Landau

index and γþ ¼ sin2ϕ ¼ 1 − γ− is a valley-dependent
index shift. The latter is related to the above computed
Berry phase ϕλ;ξ via the semiclassical relation γξ ¼
1=2 − ϕλ;ξ=2π, see, e.g., [12,13], which is here found to
be exact. As γξ depends on the valley index, we stress that
the twofold valley degeneracy (a prominent property in
graphene) is lifted for all levels by the magnetic field as
soon as α ≠ 0, 1. In order to treat both valleys at once, it is
convenient to relabel the LLs as

ϵn ≡�ϵB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jnþ γj

p
; (4)

with γ ¼ γþ and a new Landau index n ∈ Z that now also
takes negative values. When α ≠ 0, 1, each LL ϵn has a
degeneracy eB=h per unit area. LLs are plotted as a
function of α in Fig. 3(a). For graphene (α ¼ 0), the
Landau spectrum is ϵn ¼ �ϵB

ffiffiffiffiffiffijnjp
, n ∈ Z, including a

zero energy LL [3]. For the dice lattice (α ¼ 1), it is given
by ϵn ¼ �ϵB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijnþ 1=2jp
[11].

For all α, in addition to the LLs, a zero-energy flat band
of topological origin exists in an arbitrary magnetic field,
carrying 1=3 of the states (for α ¼ 1, see [5]).

Magnetization of massless fermions.—In order to compute
the orbital magnetization, we work in the grand canonical
statistical ensemble and consider the low energy LL
spectrum (4). The grand potential is written as
Ωðμ; TÞ ¼ R N ðϵÞf0μðϵÞdϵ, where N ðϵÞ is the doubly
integrated density of states (DOS), measured from the
bottom of the spectrum and fμðϵÞ is the Fermi-Dirac
function with chemical potential μ and temperature
T ¼ 1=β (with kB ≡ 1) [14]. It is then convenient to write
it as a function of the doubly integrated DOS N 0ðϵÞ
measured from zero energy. Neglecting terms which
are field independent, we find that the field dependent
part δN ≡N ðBÞ −N ðB ¼ 0Þ can be written as δN ðϵÞ ¼
δN 0ðϵÞ − δN 0ð−WÞ, where W is the energy cutoff (in
the low field limit W=ϵB → ∞) [15]. The DOS (per unit
area) in the vicinity of the contact points is given by

νðϵ; BÞ ¼ eB
h

X
n;�

δðϵ� ϵB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jnþ γj

p
Þ; (5)

including both valleys. The contribution of the flat band,
which is field independent, has been excluded. Using the
Poisson formula, we rewrite the DOS as

νðϵ; BÞ ¼ jϵj
πℏ2v2

����1þ 2
X∞
p¼1

cos
2πpϵ2

ϵB
2

cos 2πpγ

����: (6)

After a double integration, we obtain N 0ðϵÞ and δN ðϵÞ
[15]. Then, we find that the field dependent part of the
grand potential (per unit area) is given by

δΩαðμ; TÞ ¼ rB3=2
X∞
p¼1

cos 2πpγ

p3=2

Z
∞

−∞
f0μðϵÞΔ

�
2
ffiffiffiffi
p

p jϵj
ϵB

�
dϵ;

(7)

where r≡ ve3=2=ð2π2 ffiffiffiffiffiffi
2ℏ

p Þ and ΔðxÞ≡ 1 − 2SðjxjÞ in
terms of the Fresnel function SðxÞ. As we now show,
the sign of the grand potential depends on the index shift γ.
First consider the low temperature T ≪ ϵB limit. The

thermal function f0μðϵÞ → −δðϵ − μÞ so that the grand
potential becomes

δΩαðμ; T ¼ 0Þ ¼ rB3=2wαðμ=ϵBÞ; (8)

where the function wαðxÞ≡P∞
p¼1½cos ð2πpγÞ=p3=2�×

Δð2 ffiffiffiffi
p

p
xÞ, exhibiting de Haas–van Alphen oscillations,

is plotted in Fig. 3(b). It generalizes the function calculated
by McClure in the case of graphene α ¼ 0 (Fig. 3 of
Ref. [3]). In the particular case μ ¼ 0, the magnetization
Mα ¼ −∂δΩα=∂B is nonanalytic (for α ¼ 0, see [9])

Mα ¼ Cα

ffiffiffiffi
B

p
; where Cα ¼ −ð3=2Þζγð3=2Þr (9)

and

ζγðnÞ≡
X∞
p¼1

1

pn cos 2πpγ ¼ Re½Linðe2iγπÞ�; (10)

with LinðzÞ the polylogarithm function [16]. The square
root behavior (9) cannot be captured by linear response
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FIG. 3 (color online). (a) Landau level spectrum ϵn (each color
corresponding to one valley) near zero energy as a function of the
parameter α from graphene (α ¼ 0) to dice (α ¼ 1). (b) Function
wαðxÞ giving the dependence of the grand potential δΩα (at finite
magnetic field and zero temperature) on the chemical potential μ,
see Eq. (8). Blue: graphene (α ¼ 0). Red: dice lattice (α ¼ 1).
Black: critical case (αc ¼ 0.490 65).
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approaches. A similar anomalous scaling M ∝
ffiffiffiffi
B

p
was found for nodal fermions in [17]. For graphene
(α ¼ 0, γ ¼ 0), the prefactor is C0 ¼ −ð3=2Þζð3=2Þr ¼
−ð3ve3=2ζð3=2ÞÞ=ð4π2 ffiffiffiffiffiffi

2ℏ
p Þ < 0 [9]; whereas for dice

(α ¼ 1, γ ¼ 1=2), we find C1 ¼ −C0ð
ffiffiffi
2

p − 1Þ= ffiffiffi
2

p
> 0.

Contrary to the case of graphene, the dice lattice is
paramagnetic. This is confirmed numerically (see below)
as shown in Fig. 2(b). More generally, Cα=jC0j is plotted as
a function of α as a full line in Fig. 4(b). The magnetization
crosses over from dia- to paramagnetism when increasing
α. The magnetization changes sign when αc ≃ 0.490 65,
corresponding to γ ≃ 0.194 03. Duality α → 1=α implies
M1=α ¼ Mα.
Second, at finite temperature T ≫ ϵB, on the scale of the

thermal function, we can replace ΔðxÞ by ð4=πÞδðxÞ so that
Eq. (7) shows that the grand potential now varies like B2,
which is the standard linear response behavior [14]. The
susceptibility −∂2Ω=∂B2jB→0 is found to be

χα ¼ χ0
ζγð2Þ
ζð2Þ ; where χ0 ¼ − e2v2

12πT
sech2

�
βμ

2

�
;

(11)

as found by McClure when α ¼ 0 [3] (spin degeneracy is
not included here) and where ζγð2Þ is defined in Eq. (10).
In the T → 0 limit (still with T ≫ ϵB), it can be written as
χ0 ¼ −ðe2v2=3πÞδðμÞ. The sign change of χα occurs at
α≃ 0.51764, which is not exactly at the same value as for
Mα in the T ≪ ϵB limit. Duality implies χ1=α ¼ χα.

Numerics.—We now consider the energy levels in a
magnetic field for the infinite α-T 3 lattice (Hofstadter

spectrum, see [5] for α ¼ 1 and [18] for α ¼ 0), and
compute the grand potential numerically (see also [19]).
First, at T ¼ 0 and μ ¼ 0, we find that the magnetization
Mα is the sum of an anomalous Cα

ffiffiffiffi
B

p
and a regular DαB

contribution [Fig. 4(a)]. The coefficients Cα and Dα are
plotted in Fig. 4(b); Cα is properly given by Eq. (9). The
α-dependent regular contribution DαB is expected to come
from interband contributions due to lattice effects beyond
the massless fermions approximation. In that respect, a
perturbative approach, such as that developed in [8] for
α ¼ 0, might be helpful to quantitatively describe the fitted
parameter Dα.
Next, we compute the finite temperature (T ≫ ϵB)

susceptibility χ as a function of μ in the whole band for
different values of α and for T ≪ t [Fig. 1(a)]. For α ¼ 0,
aside from the central diamagnetic peak, we recover the
χðμÞ of [8]. For all α, we checked the following sum rule:
the integral of the orbital susceptibility over the whole
band

R
dμχðμÞ vanishes [15]. The α-dependent χðμÞ is an

indication of the importance of wave function dependent
interband effects that affect not only the singularity at
zero energy but also its behavior in a whole energy
range, essentially between the two van Hove singularities.
At μ ¼ 0, the susceptibility is a linear function of 1=T
[Fig. 1(b)] with a slope which is well fitted by
−e2v2ζγð2Þ=½12πζð2Þ� as predicted by Eq. (11). The slope
changes sign from dia- to paramagnetic at α ≈ 0.52.

Discussion.—The physical origin of this dia- to para-
magnetic crossover may be understood following usual
textbook arguments. Figure 5 shows how the zero field
spectrum coalesces into LLs for the cases of graphene
and dice lattices. In the case of graphene, the contribution
of each slice ½En−1; En�, which condenses into the LL
of energy ϵn, decreases the energy, and therefore gives a
paramagnetic contribution. However, the contribution of
the first (red) slice ½0; E0�, which condenses into the zero
energy LL ϵ0 ¼ 0, increases the energy and thus provides a
diamagnetic contribution which actually compensates the
total paramagnetic contribution of all other slices, giving a
total diamagnetic contribution. For the dice lattice, the
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FIG. 4 (color online). (a) Field dependent part of the grand
potential (per unit area) divided by the magnetic field δΩα=B (in
units of et=h), at zero doping μ ¼ 0 and temperature T ¼ 0, as a
function of the magnetic field B (in units of ð4π= ffiffiffi

3
p Þðℏ=ea2Þ) for

various α as indicated. Dots are obtained numerically from the
Hofstader spectrum on the corresponding lattice: δΩα=B is well
fitted by a dependence −ð2=3ÞCα

ffiffiffiffi
B

p − ð1=2ÞDαB, correspond-
ing to a magnetization Mα ¼ Cα

ffiffiffiffi
B

p þDαB. (b) Dimensionless
parameters Cα=jC0j and Dα=jD0j, obtained from the fit, as a
function of α, with C0 ¼ −ð9ζð3=2Þ=8π2 ffiffiffi

2
p Þðe3=2ta=ℏ3=2Þ and

D0 ≈ 0.094ðe2ta2=ℏ2Þ ≈ 4.7jχLj. Dots are numerical results and
the full line is the analytical prediction Eqs. (9) and (10).

FIG. 5 (color online). Coalescence of the zero field spectrum
(lower band near zero energy) into Landau levels ϵn. (a) Graphene
(α ¼ 0): ϵn ¼ − ffiffiffiffiffiffijnjp

ϵB; En ¼ − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1=2

p
ϵB with n ≥ 0.

(b) Dice (α ¼ 1): ϵn ¼ − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijnþ 1=2jp
ϵB; En ¼ − ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

ϵB with
n ≥ 0. The area of each colored slice ½En−1; En� counts the total
number of states in this slice in zero field. In a field, these states
condense into LL.
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contribution of all slices (including the first) is para-
magnetic, leading to a total paramagnetic contribution.
Therefore, the contribution of the zero-energy LL is
essential. In the intermediate case, the twofold degeneracy
of the levels is lifted [Fig. 3(a)], the n ¼ 0 LL acquires a
finite energy; therefore, its contribution becomes less
important. There is a continuous crossover between the
two extreme cases represented in Fig. 5. The qualitative
argument following this figure can, of course, be turned
into a quantitative calculation of the grand potential, which
reproduces the results obtained above.

Conclusion.—We have shown that the orbital susceptibil-
ity of a system featuring massless fermions can be con-
tinuously tuned from dia- to paramagnetic as a function of a
hopping parameter α, while leaving the zero field spectrum
unchanged. This effect is robust to a small asymmetry of
the hopping amplitudes, which would make the Dirac
cones anisotropic but would not change the structure of the
LL spectrum [20]. We have related this unique behavior to a
topological Berry phase which is no more π quantized.
Contrary to the case of graphene, the valley degeneracy is
broken by the magnetic field as soon as α ≠ 0, 1. We have
provided a lattice model where the orbital response is
affected in the whole energy spectrum, satisfying a funda-
mental sum rule, so that the responses at zero and finite
dopings are systematically reversed.
Such an α-T 3 model can be realized experimentally with

cold fermionic atoms loaded in an optical lattice. Following
the proposal of [21] for the optical dice lattice (α ¼ 1), one
simply needs to dephase one of the three pairs of laser
beams to obtain α ≠ 1 [15]. Simulating a perpendicular
magnetic field by an artificial gauge potential [22]—as has
been done very recently to study Hofstadter’s spectrum
[23,24]—the internal energy and the entropy of the trapped
Fermi gas could be measured following the techniques
of [25]. From the dependence of the free energy on the
magnetic field, the sign change of the susceptibility as a
function of α could be directly tested. See [26] for an
alternative proposal of an optical dice lattice with artificial
gauge potential. de Haas–van Alphen oscillations could
also be measured [27].

We acknowledge help from G.M. Tia at an early stage of
this work and useful discussions with the mesoscopists
in Orsay.

*fuchs@lptmc.jussieu.fr
[1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.

Novoselov, andA. K.Geim, Rev.Mod. Phys. 81, 109 (2009).

[2] M. Sepioni, R. R. Nair, S. Rablen, J. Narayanan, F. Tuna,
R. Winpenny, A. K. Geim, and I. V. Grigorieva, Phys. Rev.
Lett. 105, 207205 (2010).

[3] J. W. McClure, Phys. Rev. 104, 666 (1956).
[4] B. Sutherland, Phys. Rev. B 34, 5208 (1986).
[5] J. Vidal, R. Mosseri, and B. Douçot, Phys. Rev. Lett. 81,

5888 (1998).
[6] L. Landau, Z. Phys. 64, 629 (1930); R. Peierls, Z. Phys. 80,

763 (1933).
[7] H. Fukuyama, Prog. Theor. Phys. 45, 704 (1971).
[8] G. Gómez-Santos and T. Stauber, Phys. Rev. Lett. 106,

045504 (2011).
[9] S. G. Sharapov, V. P. Gusynin, and H. Beck, Phys. Rev. B

69, 075104 (2004).
[10] After rescaling, the lattice model has hopping parameters

tAB ¼ t=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
and tCB ¼ αtAB.

[11] D. Bercioux, D. F. Urban, H. Grabert, and W. Häusler, Phys.
Rev. A 80, 063603 (2009).

[12] G. P. Mikitik and Yu. V. Sharlai, Phys. Rev. Lett. 82, 2147
(1999).

[13] J. N. Fuchs, F. Piéchon, M. O. Goerbig, and G. Montambaux,
Eur. Phys. J. B 77, 351 (2010).

[14] E. Akkermans and G. Montambaux, Mesoscopic Physics
of Electrons and Photons (Cambridge University Press,
2007), Chap. 14.

[15] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.112.026402 for a deri-
vation of the grand potential, a proof of the susceptibility
sum rule and a proposal for an α-T 3optical lattice.

[16] L. S. Gradshteyn and L. M. Ryzhik, Table of Integrals,
Series, and Products, edited by A. Jeffrey (Academic Press,
New York, 1994), 5th ed.

[17] H. K. Nguyen and S. Chakravarty, Phys. Rev. B 65, 180519
(2002), and references therein.

[18] R. Rammal, J. Phys. (Paris) 46, 1345 (1985).
[19] Y. Ominato and M. Koshino, Phys. Rev. B 87, 115433

(2013); see also J. Liu, Z. Ma, A. R. Wright, and C. Zhang,
J. Appl. Phys. 103, 103711 (2008).

[20] M. O. Goerbig, J. N. Fuchs, G. Montambaux, and F.
Piéchon, Phys. Rev. B 78, 045415 (2008).

[21] M. Rizzi, V. Cataudella, and R. Fazio, Phys. Rev. B 73,
144511 (2006).

[22] J. Dalibard, F. Gerbier, G. Juzeliunas, and P. Öhberg, Rev.
Mod. Phys. 83, 1523 (2011).

[23] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro,
B. Paredes, and I. Bloch, Phys. Rev. Lett. 111, 185301
(2013).

[24] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton,
and W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013).

[25] Le Luo and J. E. Thomas, J. Low Temp. Phys. 154, 1
(2009).

[26] G. Möller and N. R. Cooper, Phys. Rev. Lett. 108, 045306
(2012).

[27] Ch. Grenier, C. Kollath, and A. Georges, Phys. Rev. A 87,
033603 (2013).

PRL 112, 026402 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

17 JANUARY 2014

026402-5

http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/PhysRevLett.105.207205
http://dx.doi.org/10.1103/PhysRevLett.105.207205
http://dx.doi.org/10.1103/PhysRev.104.666
http://dx.doi.org/10.1103/PhysRevB.34.5208
http://dx.doi.org/10.1103/PhysRevLett.81.5888
http://dx.doi.org/10.1103/PhysRevLett.81.5888
http://dx.doi.org/10.1007/BF01397213
http://dx.doi.org/10.1007/BF01342591
http://dx.doi.org/10.1007/BF01342591
http://dx.doi.org/10.1143/PTP.45.704
http://dx.doi.org/10.1103/PhysRevLett.106.045504
http://dx.doi.org/10.1103/PhysRevLett.106.045504
http://dx.doi.org/10.1103/PhysRevB.69.075104
http://dx.doi.org/10.1103/PhysRevB.69.075104
http://dx.doi.org/10.1103/PhysRevA.80.063603
http://dx.doi.org/10.1103/PhysRevA.80.063603
http://dx.doi.org/10.1103/PhysRevLett.82.2147
http://dx.doi.org/10.1103/PhysRevLett.82.2147
http://dx.doi.org/10.1140/epjb/e2010-00259-2
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.026402
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.026402
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.026402
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.026402
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.026402
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.026402
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.026402
http://dx.doi.org/10.1103/PhysRevB.65.180519
http://dx.doi.org/10.1103/PhysRevB.65.180519
http://dx.doi.org/10.1051/jphys:019850046080134500
http://dx.doi.org/10.1103/PhysRevB.87.115433
http://dx.doi.org/10.1103/PhysRevB.87.115433
http://dx.doi.org/10.1063/1.2930875
http://dx.doi.org/10.1103/PhysRevB.78.045415
http://dx.doi.org/10.1103/PhysRevB.73.144511
http://dx.doi.org/10.1103/PhysRevB.73.144511
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/PhysRevLett.111.185301
http://dx.doi.org/10.1103/PhysRevLett.111.185301
http://dx.doi.org/10.1103/PhysRevLett.111.185302
http://dx.doi.org/10.1007/s10909-008-9850-2
http://dx.doi.org/10.1007/s10909-008-9850-2
http://dx.doi.org/10.1103/PhysRevLett.108.045306
http://dx.doi.org/10.1103/PhysRevLett.108.045306
http://dx.doi.org/10.1103/PhysRevA.87.033603
http://dx.doi.org/10.1103/PhysRevA.87.033603

