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Using exact numerical techniques, we investigate the nature of excitonic (electron-hole) bound states and the
development of exciton coherence in the one-dimensional half-filled extended Falicov-Kimball model. The
ground-state phase diagram of the model exhibits, besides band-insulator and staggered orbital ordered phases, an
excitonic insulator (EI) with power-law correlations. The criticality of the EI state shows up in the von Neumann
entropy. The anomalous spectral function and condensation amplitude provide the binding energy and coherence
length of the electron-hole pairs which, on their part, point towards a Coulomb interaction driven crossover from
BCS-like electron-hole pairing fluctuations to tightly bound excitons. We show that while a mass imbalance
between electrons and holes does not affect the location of the BCS-BEC crossover regime, it favors staggered
orbital ordering to the disadvantage of the EI. Within the Bose-Einstein condensation (BEC) regime, the
quasiparticle dispersion develops a flat valence-band top, in accord with the experimental finding for Ta, NiSes.
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The formation and condensation of excitonic bound states
of electrons and holes in semimetallic or semiconducting
systems possessing a small band overlap or band gap is
still—half a century after its theoretical prediction [I]—a
topical issue in condensed matter physics [2-4]. If the
binding energy of the excitons exceeds the overlap or
gap, they may spontaneously condensate at low temperatures
and drive the system into an excitonic insulator (EI) state. It
has been pointed out that the semimetal-EI transition can be
discussed in close analogy to the BCS superconductivity,
whereas the semiconductor-EI transition is described in terms
of a Bose-Einstein condensation (BEC) of preformed excitons
[5]. Quite recently, as a candidate for the EI state, quasi-one-
dimensional (1D) Ta,NiSes has raised and attracted much
experimental attention [6]. Most notably, by angle-resolved
photoemission spectroscopy, an extremely flat valence-band
top at 40 K was observed and taken as a strong signature
for the EI state to be formed out of “condensed” bound
Ni 3d — Se 4 p holes and Ta 5d electrons.

The detection of the EI state in Ta,NiSes has spurred
multifaceted research activities with regard to the formation
and possible condensation of excitons in 1D systems [7].
The minimal theoretical model in this respect is of the
Falicov-Kimball type. While the original Falicov-Kimball
model (FKM) describes localized f electrons interacting
via a local Coulomb repulsion (U) with itinerant ¢ electrons
(t,) if residing at the same Wannier site [8], an extended
version takes into account also the direct nearest-neighbor
Jf-electron hopping (¢) [9]:

H=—t1.y cle;—1;> [Ifi+UY cleiflf;
(i.j) (i) i
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Here, af (a;) denotes the creation (annihilation) operator of
a spinless fermion in the @ = {c, f} orbital at site i, and D
is the level splitting between different « orbitals. In regard
to the modeling of Ta,NiSes, the half-filled-band case is of
particular importance, and it has been shown theoretically
that a direct f-c hopping (hybridization) is prohibited by
symmetry reasons, at least between the valence-band top
and conduction-band bottom [7].

For the original FKM, rigorous results were obtained
only in infinite spatial dimensions by dynamical mean-field
theory; see, e.g., reviews in Refs. [10,11]. The extended
FKM (EFKM) [Eq. (1)] has been studied extensively in the
context of EI formation for D > 1, using dynamical mean-
field theory [12], random phase approximation [13], slave-
boson [14], projective renormalization [15], and variational
cluster [16] techniques, or purely numerical diagonalization
procedures [17]. At the same time, the problem of electronic
ferroelectricity, which is equivalent to the appearance of the
EI in some theoretical models, has also attracted much
attention [18,19]. This phenomenon was confirmed for the
2D EFKM by constrained path Monte Carlo simulations
[20]. In 1D, however, true ferroelectric long-range order (the
equivalent of a nonvanishing (¢ f) expectation value in the
limit of vanishing c-f-band hybridization) is not possible.
This was demonstrated for the 1D FKM [21]. For the 1D
EFKM, power-law critical (excitonic) correlations were
observed instead [20]. Mean-field-based approaches [22]
are unable to capture the EI state in 1D (despite their success
for D > 1), mainly due to the lack of an order parameter
associated with the breaking of the U(1) symmetry. On
this note, a thorough investigation of the ground-state and
spectral properties of the 1D EFKM is still missing.

In this paper, we present a comprehensive numerical
analysis of the 1D EFKM at half-filling. At first, we
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determine the ground-state phase diagram from large-scale
density-matrix renormalization group (DMRG) [23]
calculations and identify—depending on the orbital level
splitting—staggered orbital ordered (SOO) and band-
insulator (BI) phases as well as an intervening critical EI
state. Then, within the EI, we detect a crossover between
BCS- and Bose-Einstein-type condensates monitoring the
exciton-exciton correlation and exciton momentum distri-
bution functions. Note that in our 1D setting, we use the term
“condensate” to indicate a critical phase with power-law
correlation decay. Finally, combining DMRG, Lanczos exact
diagonalization (ED), and Green functions techniques [24],
we study the anomalous spectral function and extract the
correlation length and binding energy of the electron-hole
pairs. This allows us to comment on the nature of the
excitonic bound states preceding the condensation process
and to discuss the effect of a mass imbalance between (¢)
electrons and (f) holes.

Examining the (large-U) strong-coupling regime gives a
first hint of which phases might be realized in the 1D
EFKM at zero temperature. To leading order, the EFKM
can be mapped onto the exactly solvable spin-1/2
XXZ-Heisenberg model in a magnetic field 4 = D aligned
in the z direction [25]: Hyyz = J) ;{AS5S%,, + (1/2)
(S7S7 +8787)} —hyo;S5, with J =4ts|t,/U and
A = (17 +12)/(2|t7]t.). The XXZ model exhibits three
phases: the gapped antiferromagnetic (AF) phase, the
critical gapless XY phase with central charge ¢ = 1, and
the ferromagnetic (FM) phase, where both transition lines,
those between the AF and XY phases (k. /J) and those
between the XY and FM phases (h,,/J), follow from the
Bethe ansatz [26]. Correspondingly, increasing the magni-
tude of the f-c level splitting D in the EFKM, we expect to
find the following sequence of phases: (i) the SOO phase
that matches the Ising-like AF phase in the XXZ model,
(i1) an intermediate critical EI phase with finite excitonic
binding energy, and (iii) a BI state, which is characterized
by a filled (empty) f (c¢) band and related to the FM phase
of the XXZ model. The phase boundary separating the EI
and BI states is exactly known to be [27]

D, = /4l | + 1) + U - U. @)

The complete phase diagram of the 1D EFKM is
presented in Fig. 1. Symbols denote the DMRG BI-EI
and EI-SOO transition points, which can be obtained from
the energy differences

D,(L) = Eg(L.0) = Eg(L = 1,1) = —=Eo(L —1.1)  (3)
and
D (L) =E|(L/2+1,L/2—1)—=Ey(L/2,L/2), (4)

respectively, in the course of a finite-size scaling analysis
(see the inset). Here, Eo(Ny, N.) denotes the ground-state
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FIG. 1 (color online). Upper panel: Ground-state phase diagram
of the half-filled 1D EFKM with [¢;| = 0.1. Here and in what
follows, we take 7, as the unit of energy. Squares (circles) denote
the EI-BI (EI-SOO) transition points D,, (D,,) obtained by the
DMRG method with up to L = 128 sites and OBCs. The solid
line gives the analytical solution (2) for the EI-BI boundary; the
dotted line shows the strong-coupling result for the EI-SOO
boundary. The finite-size scaling of D, (L) is illustrated by the
inset (open symbols); here, the corresponding strong-coupling
data are given by filled symbols. Lower panel: Central charge
obtained at U = 5 for various L and PBCs. Criticality c* ~ 1 is
observed for the EI.

energy for a system with N4 f and N, c electrons at D = 0.
Note that Eq. (3) holds for both open and periodic boundary
conditions (OBCs and PBCs), whereas Eq. (4) has to be
evaluated with PBCs (if here OBCs were used, an extra
factor 2 results: D¢ =2D, ). For the DMRG runs
performed in this work, we keep at least m = 3200
density-matrix eigenstates, which ensures a discarded
weight smaller than 1x 107%. The D, (L — oo) values
demonstrate the accuracy of our DMRG calculations. Exact
results for D, (L — oo) can only be obtained numerically,
where a comparison with the dotted line reveals the limits
of the strong-coupling approach [25]; see Fig. 1. The
criticality of the EI phase—corresponding to the critical
XY phase in the XXZ model with central charge ¢ = 1—
can be confirmed by the von Neumann entanglement
entropy S;(¢) = —Trs(p, In p,) [with reduced density
matrix p, = Tr;_,(p)]. Numerically, the central charge
is best estimated from the entropy difference [28,29]:

¢ (L) =3[S,(L/2— 1) = S,(L/2)/In [cos(x/L)].  (5)

Our results for ¢*, displayed in the lower panel of Fig. 1 for
|t;| = 0.1 at U = 5, give clear evidence that ¢c* — 1 in the
El, whereas we find ¢* = 0 in the BI and SOO phases.
Regrettably, ¢*(L) is strongly system size dependent near
the EI-SOO transition.
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Let us now discuss the nature of the EI state in more
detail. For simplicity, we consider the case 747, < 0, where
two Fermi points (£kp) exist for U = 0, provided D is
sufficiently small (otherwise, a direct band gap emerges).
As a signature of an excitonic Bose-Einstein condensate in
1D, one expects (i) a power-law decay of the correlations
(bib;) with b = c] f; and (ii) a divergence of the excitonic
momentum distribution N(gq) = (bjb,) with b = (1/v/L)
> kc,t g f for the state with the lowest possible energy (in
the direct gap case at ¢ = 0) due to the absence of true
long-range order. Figure 2 supports these expectations:
Whereas in the weak-coupling BCS regime (U = 1),
(bjb;) decays almost exponentially and N(g) shows only
a marginal system-size dependence (for all momenta), in
the strong-coupling BEC regime close to the EI-BI tran-
sition (U = 1.9), (b/b;) exhibits a rather slow algebraic
decay of the excitonic correlations and N(¢g = 0) becomes
divergent as L — oo.

We note that the (¢’ f) expectation value is always zero for
a 1D system in the absence of an explicit f-c-band
hybridization. To examine the BCS-BEC crossover, we
adopt a technique introduced for detecting the particle
fluctuations of Cooper pairs in 2D systems [24]. That is,
we consider the off-diagonal anomalous exciton Green
function

; 1
Ckw+il1—7'[+E0

fr

Gcf(k7 (l)) = <l//1 l//0>7 (6)

where [y) is the ground state [N, N..) with fixed numbers
of f and c electrons, |y) is the excited state |N,— 1,
N, + 1), E, is the averaged energy of |y,) and |y, ), and 5
is a broadening, and determine the corresponding spectral
function F(k,w) = (—=1/7)IGs(k,w) that gives the
condensation amplitude F(k) = (y|c,filwo). F(k) can
be directly computed by the ground-state DMRG method,
taking into account an extra target state |y ). From F(k), the
coherence length characterizing the excitonic condensate
follows as

£ = IViF(K)P/D_IFK)P. (7)
k k

0 w2 7
q

FIG. 2 (color online). (a) Exciton-exciton correlation function
(bib;) and excitonic momentum distribution function N(g) at
() U=1 and (¢) U=1.9 for t; =—0.1, D=1. Data are
obtained by the DMRG for 1D L-site lattices with PBCs.

The binding energy of the excitons Ep can be also
determined from diverse ground-state energies [17]:

EB - EO(Nf - I,NC + 1) +E0(Nf,NC)
~Eo(Ny—1,N.) —Eo(Np,Ne 4+ 1), (8)

Figures 3(a) and 3(b) show the anomalous spectral
function F(k,w) in the weak-coupling (U =1) and
strong-coupling (U = 1.9) regimes, respectively, where
D = 1. In the former case, the EI arises from a semimetallic
phase. As a consequence, most of the spectral weight of the
quasiparticle excitations is located around the Fermi points
k = *kp, again indicating a BCS-type pairing of electrons
and holes. Obviously, Fermi surface effects play no role for
large U, where the Hartree shift drives the system in the
semiconducting regime. Here, the excitation gap occurs at
k = 0. Note that the gap between the lowest energy peaks
in F(k,®) is equal to the binding energy Ep given by
Eq. (8). Figure 3(c) displays the frequency-integrated
quantity F(k). At U =1, F(k) exhibits a sharp peak at
the Fermi momentum. Increasing U, the peak weakens and
shifts to smaller momenta. Close to the EI-BI transition
point U=19<SU,., =192, F(k) has a maximum at
k =0 but is spread out in momentum space, indicating
that the radius of electron-hole pairs becomes small in real
space. Figure 3(d) gives the quasiparticle dispersion E(k)
derived from A(k, w). Driving the BCS-BEC crossover by
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FIG. 3 (color online). Anomalous spectral function F(k, ®) in
the 1D EFKM with (a) U = 1 and (b) U = 1.9, where ¢, = —0.1,
D =1. Data are obtained by ED using n=0.1, L =16,
and PBCs. Numerical results for (¢c) F(k) and (d) E(k) are
shown for U =1 (circles), 1.5 (diamonds), 1.7 (triangles), and
1.9 (squares). F(k) is determined by the DMRG for L = 64
(PBC), whereas E(k) is extracted from the lowest peaks of single-
particle spectra A(k, w) calculated by ED for L = 16 (PBC).
Dashed lines in (c) mark the corresponding Fermi momenta
kr = znN_./L in the noninteracting limit.
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2 It :—O.Ilt 1. crossover, which can be derived from the intensity plots
3 ! ‘ £ for Ez and &, does not change in this presentation. To
i\ = expose correlation effects, we included in Fig. 4 the
= 1 0-5§, semimetallic-to-semiconducting transition line, assuming
Q =

D/([tf| +t.)

U/(ftgl +¢,)

U/(Itg +t.)

FIG. 4 (color online). Intensity plots of the binding energy Eg
(upper panels; L = 128, OBC) and the coherence length & (lower
panels; L = 64, PBC) in the rescaled U/(|t;| +1.) — D/(|t7| +
t.) plane. Data were calculated by the DMRG for N, > L/2 (to
avoid the AF state in the Hubbard model limit |t;| = 1, D = 0).
Solid lines denote the SOO-EI and EI-BI transition points in the
thermodynamic limit (in the lower panels, the small uncolored
slot just above the SOO-EI appears because |Ep| and & are
obtained here for a fixed finite system size). The dashed line
[Ugi(D)] would separate the semimetallic and semiconducting
phases if the EI is assumed to be absent.

increasing U, the peaks around k = +k disappear as well
as the notch around k = 0. Instead, a valence band with
a flattop around k& = O develops, just as observed, e.g., in
quasi-1D Ta,NiSes [6].

Figure 4 shows the variation of the coherence length and
the binding energy in the EI phase of the 1D EFKM with
|tf| = 1 (left panels) and 0.1 (right panels). At small U, the
excitonic state is composed of electron-hole pairs having
large spatial extension, leading to large values of . Ep, on
the other hand, is rather small, but increases exponentially
with U. This typifies a BCS pairing mechanism. At large U,
the binding increases linearly with U. Here, tightly bound
spatially confined excitons acquire quantum coherence (with
£ <« 1) in a Bose-Einstein condensation process.

We finally address the influence of a mass imbalance
between f- and c-band quasiparticles. The EI phase is
absent for 7, = 0. In the mass-symmetric case |t/| = t,, the
1D Hubbard model results for D = 0. Here, we cannot
distinguish between the AF (with vanishing spin gap) and
EI phases because both phases are critical. Therefore, in
this limit, we have examined the 1D EFKM for N, > L/2.
To this end, both the U and D axes in Fig. 4 have been
rescaled by (|7;| + 7.), as suggested by the EI-BI transition
lines [Eq. (2)]. Indeed, we find that the EI phase shrinks as
|t;| decreases. That is, the mass anisotropy gets stronger,
which is simply a bandwidth effect, however, leading to a
stronger Ising anisotropy. This, on their part, enlarges the
SOO region, while the EI-BI phase boundary basically is
unaffected. Importantly, the location of the BCS-BEC

that the EI phase is absent. Ug;(D) can be obtained from
the band gap A, that depends linearly on U for fixed D:
A.(D) =U+2(|ty| +1t.) + Ug(D) [ie., Ug(D) scales
again with |t¢| +1.]. Apparently in the BCS-BEC cross-
over regime, a strong renormalization of the band structure
due to the incipient f-c hybridization takes place.

To conclude, adopting the numerically exact density-
matrix renormalization group technique, we examined the
1D EFKM and, most notably, proved the EI state shown to
be critical. The complete ground-state phase diagram was
derived and put into perspective, with the Bethe ansatz
results obtained in the strong-coupling limit for the spin-1/2
XXZ chain. Besides the El-to-band-insulator transition, the
boundary between the EI and a phase with staggered orbital
ordering was determined with high accuracy. The whole
phase diagram of the 1D EFKM could be scaled by |¢| + 7.
staggered orbital ordering appears only for small mass-
imbalance ratios |¢¢|/f.. The absence of an order parameter
prevents addressing the problem of excitonic condensation
in 1D systems by the usual mean-field approaches. That is
why we exploited the off-diagonal anomalous Green func-
tion. The related anomalous spectral function elucidates the
different nature of the electron-hole pairing and condensa-
tion process at weak and strong couplings. At fixed level
splitting, the binding energy between c electrons and f
holes is exponentially small in the weak-coupling regime.
It strongly increases as the Coulomb attraction increases.
Concomitantly, the coherence length of the electron-hole
pair condensate shortens. This unambiguously demonstrates
a crossover from BCS-like electron-hole pairing to a Bose-
Einstein condensation of preformed excitons. The quasipar-
ticle band dispersion in the BEC regime exhibits a rather
dispersionless valence band near k = 0, despite the fact that
the expectation value (¢’ f) is zero because of the 1D setting.
This result further supports the EI scenario for quasi-1D
Ta,NiSes, where the flat valence-band top was detected by
angle-resolved photoemission spectroscopy experiments.
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