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We show that memory can be encoded in a model amorphous solid subjected to athermal oscillatory
shear deformations, and in an analogous spin model with disordered interactions, sharing the feature of a
deformable energy landscape. When these systems are subjected to oscillatory shear deformation, they
retain memory of the deformation amplitude imposed in the training phase, when the amplitude is below a
“localization” threshold. Remarkably, multiple persistent memories can be stored using such an athermal,
noise-free, protocol. The possibility of such memory is shown to be linked to the presence of plastic
deformations and associated limit cycles traversed by the system, which exhibit avalanche statistics also
seen in related contexts.
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Equilibrium in thermodynamic systems is characterized
by a loss of memory of previous history, and conversely,
systems with broken ergodicity of some form are capable of
retaining memory of their past history. Systems displaying
order that is induced by a symmetry breaking field can be
viewed as a simple example, whereas the memory effects
displayed by systems stuck in nonequilibrium, disordered
or glassy, states are far more complex [1–8]. The presence
of a memory of previous history implies that with specific
measurements of properties, it is possible to “read” such
memory. Thus one may speak of training a system to
encode specific information, which may be read by making
a corresponding measurement later.
Recently [9,10] it has been showed that a model [11] of a

dilute suspension of (non-Brownian) particles contained in
a viscous medium, subjected to oscillatory shear deforma-
tion, can retain memory of the amplitude of deformation.
Repeated oscillations of a given amplitude γ1 bring the
system toward a stable state in which particles cease to
move when viewed stroboscopically, i.e., at zero strain after
each cycle. In this sense, we name such a state “reversible,”
following the terminology of Ref. [12]. This procedure
encodes a memory that can be read by performing a single
cycle of deformation of amplitude γ and measuring the
fraction of particles f that have moved, as a function
of γ. The graph of f as a function of γ has a kink at γ1,
and for a very large number of training oscillations no
particles are displaced by a subsequent reading cycle of
amplitude less than γ1. Moreover, if the training phase
consists of alternating oscillations of different amplitudes
γ1 > γ2 > …, the system is capable of showing multiple
kinks corresponding to the training amplitudes γi. For a
high number of training cycles, however, the signal of
all the γi < γ1 is suppressed in favor of that of γ1, so that

multiple memories are a transient phenomenon. Such
multiple transient memories are shown to be stabilized
(made “persistent,” in the language of Ref. [9]) if noise is
introduced in the system in the form of random particle
displacements. It was proposed that the phenomenon of
such multiple transient memories can be observed in a
large variety of systems like granular materials, colloids,
and foams, as long as (1) these can reach reversible
states during the initial cyclic training, and (2) there is an
ordering of reversible states (so that a state that is reversible
under a deformation cycle of amplitude γ1 is reversible
under a cycle of amplitude γ2 < γ1). Which systems obey
these criteria is a question that remains to be addressed.
The model studied in Refs. [9,11] exhibits a localized or

diffusive transition as a function of the strain amplitude, and
the memory effects are seen in the localized phase, below a
critical threshold γc. Remarkably, such a transition, with
similar critical qualitative features, is also observed in a
model dense amorphous solid [13]. In this Letter we ask
whether memory effects, similar to those seen in
Refs. [9,10], are also present in the case of amorphous
solids, something, in principle, unexpected due to the more
complicated nature of their potential energy landscape. To
do so, we study memory effects under oscillatory shear
deformation of an amorphous solid which is a binary
mixture of particles with Lennard-Jones interactions
(BMLJ). We also investigate a disordered spin model
(a flavor of the NK model) used in Ref. [14] to study
deformation behavior of glasses. We find that multiple
memories can be encoded in these systems without noise,
and this ability arises from the presence of complex periodic
orbits that define the steady state, unlike in Refs. [9,10]. We
also find that discontinuous plastic deformations involved in
these cycles exhibit “avalanche” statistics also seen in
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magnetic systems exhibiting memory effects [5], earth-
quakes, and deformations in amorphous solids leading to
plastic flow [12,15–18].
The BMLJ samples consist of N ¼ 4000 Lennard-Jones

particles interacting with a Kob-Andersen choice of param-
eters, cutoff, and composition as in Refs. [13,19]. The
density is equal to 1.2 (in reduced units) so that the system
is much denser than the suspensions studied in Refs. [9,11].
These are equilibrated at a constant temperature T ¼ 0.466
via molecular dynamics in the NVT ensemble using
LAMMPS [20]. The equilibrated configurations are then
minimized in energy using a conjugate-gradient algorithm,
and the deformation is carried out by means of an athermal-
quasistatic [15] procedure where the strain γxy is incre-
mented in steps of dγxy ¼ 2 × 10−4 by affinely deforming
particle positions, updating boundary conditions, and
minimizing the energy via conjugate-gradient at each step.
Systems are initially shear deformed by varying the strain
between −γ1 and γ1 for a certain number of full deforma-
tion cycles (the “training” phase). Alternatively, we per-
form the oscillatory training at two amplitudes (γ1 and γ2)
through a specified repeat sequence. The values of the γi
are chosen to be below the critical value γc [13], the
value under which the system is guaranteed to reach a
reversible state for a sufficiently large number of oscil-
lations. After that, samples are subjected to a single cycle of
amplitude γ (“reading” phase). We monitor the changes in
the sample during a reading cycle of amplitude γ by
measuring the mean squared displacement (MSD) of the
particles, averaged over several samples.
The NK model, on the other hand, is a spin model

characterized by (an even number of) N lattice sites
occupied by spins mi that can take the values 0 or 1 with
the constraint

P
imi ¼ N=2 (not present in Ref. [14]). Each

spin has K neighbors m1
i ;…; mK

i , and the energy of the
system E ¼ Eðm1; :::::; mNÞ is defined as

E ¼ − 1

2N

XN

i¼1

½1þ sin ð2πðai þ γNKbiÞÞ�; (1)

where γNK is the value of the “shear strain,” and the values
ai and bi depend on the ith spin and its neighbors, i.e.,
fmi;m1

i ;…; mK
i g, according to the maps a and b

f0; 1gKþ1 →
a ½−1; 1�; (2)

f0; 1gKþ1 →
b ½0; 1� (3)

that associate every possible binary (K þ 1)-tuple to a random
value chosen with uniform probability in the intervals written
above.TheenergyinEq. (1) impliesanenergylandscapewhere
theroughnessgrowswiththeparameterK.Thestrainparameter
γNK changes the energy continuously, and allows one to
perform trainings and reads as in the BMLJ case. Two NK
configurationsareconsideredneighboring if theyareconverted

to the other by the application of a single Kawasaki exchange
move [21]. Equilibrated configurations can be obtained by
performingaMonteCarlorunat temperatureT usingKawasaki
moves. For each of these, the associated inherent structures
(local energy minima) are found by steepest descent with
Kawasaki moves and their average energies depend on the
equilibration temperature T in qualitative agreement to model
glassy systems.Weperformoscillatory athermal deformations
onNKsamples (withN ¼ 20,K ¼ 10), starting from inherent
structures obtained from configurations equilibrated at
T ¼ 1. γNK is incremented in steps dγNK ¼ 0.005 and the
energy isminimized at each step. Different NK configurations
at γNK ¼ 0 are compared by measuring their Euclidean
distance d divided by N. d2=N is the direct analogue to the
MSD of the BMLJ case.
Results for different training for the BMLJ and the NK

model are presented in Fig. 1. It can be noticed [see Fig. 1(a)]
that the BMLJ samples trained with a maximum ampli-
tude γ1 ¼ 0.06 are not necessarily stable under cycles of
amplitude γ < γ1 since the MSD is not zero for such γ and,

FIG. 1 (color online). MSD and distance d (scaled by N)
between configurations before and after a reading cycle as a
function of the amplitude γ, starting from samples trained by
oscillatory deformation at (a) γ1 ¼ 0.06 for the BMLJ model and
(b) γ1 ¼ 0.3 for the NK model. The value at which the training is
performed can be easily read, and configurations can be altered
by cycles of amplitude γ < γ1, even if obtained after a long series
of training oscillations.
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thus, there is no ordering of reversible states. Figure 1(b)
shows that the same observation holds also for the NK
model. This canbe rationalizedby the fact that reversibility of
given configurations under a full cycle has a completely
different mechanism in the BMLJ and NKmodels compared
to the model in Ref. [9]. In the models discussed here, the
dynamics is dependent on the evolution of the energy
landscape under increasing strain and the system undergoes
various inherent structure transitions as a consequence of
the destabilization of the energy minima (this, in the BMLJ
case, is related to collisions with potential energy saddle
points [22]) during a cycle of amplitude γ1, whereas this is
not at all the case in Ref. [9]. As indicated in Fig. 2 reversible
states are achieved in our case with the rearrangements
associated with inherent structure transitions canceling out
over the full strain cycle, and not necessarily with step-by-
step reversibility; i.e. the sequence of inherent structure
transitions does not need to retrace when strain is reversed
in order to produce reversible states.
Figures 2(b)–2(d) show the potential energyΔE [once the

parabolic energy background shown in Fig. 2(a) has been
subtracted] during reading cycles for different amplitudes,
plotted as a function of strain. ΔE exhibits discontinuities
corresponding to inherent structure transitions. If the
amplitude of the reading cycle is equal to the training
value γ1, ΔE traces a closed loop [Fig. 2(c)]. If a system
tracing such an orbit in configuration space with strain
amplitude γ1 is deformed by a smaller [Fig. 2(b)] or higher
[Fig. 2(d)] amplitude, the sequence of transitions is not
necessarily the same as for γ1 and the system does not
return to the initial state. The destabilization at reading
amplitudes smaller than γ1 is not present in the systems
studied in Refs. [9,11], where configurations stable for
oscillations of amplitude γ1 are stable for all γ < γ1 if noise
is absent.
As seen in Fig. 2, stable states associated to some value

γi can be destabilized (and, thus, their memory erased) by
oscillations of any amplitude γj ≠ γi. Thus, if a sample is
trained by alternating cycles of different amplitudes γi the
largest amplitude γ1 doesn’t necessarily take over, even in
the absence of noise. This effect is clearly seen in Fig. 3(a)
for BMLJ systems subjected to strain cycles of the type
0 → γ1 → −γ1 → 0 → γ2 → −γ2 → 0 (with γ2 ¼ 0.04,
γ1 ¼ 0.06) in the training phase. In this case, for a high
number of training cycles, the MSD plotted as a function
of γ converges to a curve showing kinks at both γ1 and γ2.
The information about the two (or, in general, multiple)
training amplitudes is, thus, encoded and retained for
arbitrarily large numbers of training cycles in a persistent
manner, as opposed to transiently, as in the absence of
noise in Refs. [9,10]. The deformation at the largest
deformation amplitude γ1 does not eventually erase the
signal of γ2 because each of the training oscillations at
some amplitude is able to erase part of the information
encapsulated by the training at the other amplitudes.

Multiple memories are also shown by the NK model
when it is deformed with the same protocol followed for the
BMLJ model. As shown in Fig. 3(b) such memories are
also persistent.
To characterize the spatial features of the particle

rearrangements that occur during a reading cycle in the
trained BMLJ samples, we show in Fig. 4(a) particles that
move more than 0.1σAA (σAA being the diameter of the

FIG. 2 (color online). (a) Potential energy measured in a
reading cycle starting from a BMLJ sample trained at
γ1 ¼ 0.06 for different oscillation amplitudes γ ¼ 0.052, 0.06,
0.068. The data series almost overlap and are all well fit by the
same quadratic profile. In (b)–(d), the quadratic fitting function is
subtracted to obtain ΔE, and the ends of the curves are marked
with symbols. The three lines initially follow the same path
(for positive strains) and separate as the respective amplitudes are
reached. The green line in (c) does join itself at zero strain after a
full cycle, but this doesn’t happen for the other oscillation
amplitudes (the red and blue lines have loose ends) so that
samples leave the stable orbit for γ ≠ γ1.
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largest LJ component), rendering particles displaced in the
same transition with the same color. The choice of the
cutoff is nontrivial (see, e.g., Ref. [17] for a discussion);
here, we follow the observation in Ref. [23] that particle
displacements exhibit a power law distribution arising from
elasticity, followed by an exponential tail, and choose the
cutoff that separates the two regimes. Particles that move
the most in such rearrangements typically do cluster
together in space. Typical clusters range from 1 to about
100 particles for our system size, and interestingly, the sizes
are distributed according to a power law with exponent
∼ − 3=2 [see Fig. 4(b)], similarly to systems exhibiting
avalanches [5], and are, thus, not localized in any simple
way. A better characterization of the statistics of these
events demands further analysis of system size and noise or
temperature effects, which is beyond the scope of the
present work.
To summarize, we have studied memory effects in two

model systems (BMLJ and NK) subjected to athermal-
quasistatic deformations, a procedure that is expected to
describe the qualitative behavior of disordered solids at low

temperature and low shear rate. These systems evolve to a
steady state upon repeated cyclic deformations at a fixed
amplitude (below the critical value γc [24]), and this
training amplitude can be read by performing a single
cycle of strain at varying amplitudes, similarly to the
observation for a model of suspensions in Refs. [9,10].
Differently from Refs. [9,10], however, the systems that we
study show no ordering of reversible states, and we have
used this property to demonstrate that in these systems it is
possible to encode multiple memories that are persistent.
This possibility is related to the fact that reversible states
attained at the training strain amplitude exhibit nontrivial
periodic orbits, which are disrupted by cyclic shear strain at
any other amplitude. Reading the information encoded in
our systems is a destructive operation, and devising
protocols whereby memory is tolerant to multiple read
cycles poses an interesting challenge. As verified in
Ref. [13], finite size effects do not affect the qualitative
features of the dynamical transition in this system, and we,
therefore, expect size effectsnot to significantlybearuponour

FIG. 3 (color online). MSD and distance d (scaled by N)
between configurations before and after a reading cycle as a
function of the amplitude γ, starting from samples trained by
oscillatory deformation at (a) γ1 ¼ 0.06, γ2 ¼ 0.04 (as described
in the text) for the BMLJ model and (b) γ1 ¼ 0.3, γ2 ¼ 0.2 for the
NK model. The values at which the training is performed can be
easily read even after a large number of oscillations, as samples
retain multiple memories of the training phase in a persistent way.

FIG. 4 (color online). (a) Snapshot of a BMLJ reversible sample
trained and read with γ1 and γ ¼ 0.06. Particles that move more
than 0.1σAA during different transitions occurring in the reading
cycle are drawn in different colors at the positions that they occupy
at the beginning of the cycle. (b) Plot of the size of clusters of
particles that move more than 0.1σAA (particles belong to the same
cluster if their distance is < 1.4σAA) during transitions. Large
clusters become increasingly rare as their size grows.
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analysis. The displacement events corresponding to transition
steps in these periodic orbits are found to be spatially
correlated displacements of particles,which, however, exhibit
a broad, power law distribution of sizes. Our observations
should be of relevance to memory effects in a wide range of
glassy systems subjected to oscillatory external fields. In
particular, it will be interesting to explore analogies with
disordered spin systems in oscillatory magnetic fields.
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