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The van der Waals dispersion force between graphene nanoribbons is investigated. For this purpose, a
nonretarded Lifshitz-like formula for parallel 1D systems is presented within the random phase
approximation. Using the response properties of the ribbons from a tight binding model, it is found
that the qualitative behavior of the force is similar to the one between two insulating 1D systems. On
the other hand, the quantum mechanical van der Waals force can become thermal in nature when the
nanoribbons have sufficiently strong chemical potential. It is found that this tuning capability is due to the
unique dielectric properties of graphene nanoribbons. Results for other typical 1D materials are also
presented, which enable building a better understanding of this ubiquitous force at reduced dimensions.
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Introduction.—The discovery of graphene, a single layer
of graphite, has lead to significant technological break-
throughs and exciting new areas of research [1]. Advances
towards graphene devices have brought special attention to
how graphene and its derivatives interact with each other
and with other materials [2]. At the submicron scale, van
der Waals (vdW) forces become particularly important due
to their long-ranged dispersive nature and nonaditivity.
Progress has been made in overcoming computational
challenges as first principle methods have been developed
to quantify these features [3–5]. Analytical efforts have also
shown that the unique properties of graphene affect the
vdW interaction in profound ways. For example, unlike
most systems at room temperature, the interaction is
dominated by thermal fluctuations wherein quantum
mechanical effects are negligible [6], even at scales down
to 50 nm. Also, the force can be modulated significantly via
the graphene chemical potential or by inducing a band gap,
which is typically not observed in other systems [7–10].
The first measurements of Casimir-vdW forces between
graphene and substrates have also been reported [11].
Graphene nanoribbons (GNRs), strips of graphene, have

recently received significant interest [12]. This is largely
motivated by the finite energy gap originating from the size
constraints, which makes GNRs more suitable for logic
nanodevices [13]. Although the vdW interaction is just as
important for GNRs as for graphene, the investigation of the
force for ribbons has received a lot less attention. Recently,
however, there has been a rising interest in 1D Casimir-vdW
forces [14–16], whereupon these forces are calculated
between metallic and dielectric wires. Although these works
provide insight into 1D dispersive interactions, applying
their methods for general systems and taking into account
the relevant dispersive properties is not straightforward.
Besides understanding the effects of dimensionality and

materials properties, the role of temperature (T) on dis-
persive interactions has been a long-standing issue [17,18].

In addition to the always present quantum mechanical
fluctuations, a finite T induces thermal fluctuations.
Decoupling and quantifying the thermal and quantum
mechanical fluctuations is difficult for typical metals and
dielectrics. Recent experiments have reported measure-
ments of the thermal force in the μm range via torsion
pendulum apparatus [17]. However, other researchers point
out that these results need further evaluations in light of
large experimental errors, different dielectric response
models, and application of the proximity force theorem
[18]. Therefore, finding suitable materials to bring reso-
lution to this debate is highly desirable.
This Letter presents a formalism, based on the random

phase approximation (RPA), which gives a Lifshitz-like
formula for vdW interactions between 1D structures. We
apply this formalism to calculate the force between two
GNRs using explicit expressions for their electronic and
dielectric properties. We emphasize the quantum mechani-
cal and thermal regimes and identify how the dimension-
ality and chemical potential affect the strength and distance
dependence of the force. We show that the GNR force
exhibits transitions from quantummechanical to thermal by
changing the chemical potential. This constitutes major
progress in identifying a system, which can potentially be
used by experimentalists to tune the interaction in an effective
manner. Given the fact that vdW forces are often the cause for
stiction between components of microdevices, our study is
certainly advantageous for the development of graphene-
based electronics. Results for other 1D systems are also
given, which enables one to identify common and unique
characteristics affecting the vdW force between GNRs.

The van der Waals force.— The system under consideration
consists of two ribbons, modeled as infinitely thin, infinitely
long strips as shown in Fig 1(a). The nonretarded vdW force
[19] is obtained from the average product of the electron
density fluctuations, n1;2, for each ribbon and the Coulomb
interaction energy [6]. The force per unit length is found as
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dx1
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Z
dq
2π

×
∂
∂d ½vðjx1− x2j;q;dÞ�hn1ðx1;qÞn2ðx2;−qÞi; (1)

where vðx; q; dÞ ¼ 2e2K0ðjqj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ d2

p
Þ, K0 is the zeroeth

order modified Bessel function of the second kind, and e is
the electron charge. The wave vector q is directed along the
common axial y direction [Fig. 1(a)].
The equal time density-density correlator,

hn1ðx1; qÞn2ðx2;−qÞi, may be found using finite temper-
ature Green’s function techniques [20]. It is related to the
polarization χ of the system,

χðr1; τ1; r2; τ2Þ ¼ hTτ½n1ðr1; τ1Þn2ðr2; τ2Þ�i
− hn1ðr1; τ1Þihn2ðr2; τ2Þi

¼ −Gðr1; τ1; r2; τ2ÞGðr2; τ2; r1; τ1Þ; (2)

where Tτ is the time ordered product operator with τ being
an imaginary time parameter and G is the two-point
Green’s function. The density-density correlator is evalu-
ated via Wick’s theorem, generating a series of two-point
correlator products. Further, we utilize the RPA, which
corresponds to calculating those correlators represented by
the bubble diagrams, shown in Fig. 1(b). The RPA is a good
approximation for the collective screening effects for most
materials, including graphene and related nanostructures
[21]. Averaging over the individual density fluctuations
hn1;2ðr1;2; τ1;2Þi yields zero.
We consider the case of two narrow ribbons with

translational symmetry along the axial direction where
d ≫ w. The longitudinal response for this 1D system is
given by χðr; τ; r0; τ0Þ ¼ χðy − y0; τ; τ0Þ. After performing a
Fourier transformation along y, one obtains

χðq; dÞ ¼ kBT
X
l

χ1ðq; iωlÞWðq; iωl; dÞχ2ðq; iωlÞ; (3)

χ1ðq;ωlÞ ¼ χ2ðq;ωlÞ ¼ χ0ðq;ωlÞ=½1 − vðqÞχ0ðq;ωlÞ�;
(4)

Wðq;ωl; dÞ ¼ vðq; dÞ=½1 − χ1ðq;ωlÞv2ðq; dÞχ2ðq;ωlÞ�;
(5)

where ωl ¼ 2πlkBT=ℏ are the Matsubara frequencies,
vðq; dÞ ¼ 2e2wK0ðjqjdÞ. The Coulomb potential is often
approximated [15] by its dominant term vðqÞ ¼
−2e2 lnðjqjwÞ for typical metals or dielectrics at small
d. The response for each structure χ1;2 (taken to be identical
here) is also calculated via the RPA, meaning that χ0
corresponds to the bare polarization shown in Fig. 1(c).
The above results enable one to write the vdW force per

unit length in the following way:

f ¼ −2kBT
X0
l¼0

Z
∞

0

dq
π

∂vðq; dÞ
∂d

1

vðq; dÞ

×

 
1

½ vðqÞvðq;dÞ�2 1
ρBðq;iωlÞ2 − 1

!
;

ρBðq; iωlÞ ¼
χ0ðq; iωlÞ

1=vðqÞ − χ0ðq; iωlÞ
; (6)

where the prime indicates the l ¼ 0 term is multiplied by
1=2. Equation (6) is a Lifshitz-like expression for the
interaction when retardation is not taken into account. It
gives a straightforward way to calculate the vdW force
between 1D structures in terms of their macroscopic
response properties. It requires knowledge of χ0, which
depends on the electronic structure and it corresponds to the
longitudinal response of the system. Also note that ρB is a
unitless coefficient.
This formalism is now applied to calculate the vdW force

between some typical materials. The Coulomb potential is
approximated by vðqÞ ¼ −2e2 lnðjqjwÞ, which helps us
obtain the results summarized in Table I. Consider two 1D
insulators, described by a Drude-Lorentz χ0 ¼ −q2n1D=

FIG. 1. (a) Two infinitely thin, infinitely long, strips of width w
separated by a distance d. (b) Diagrammatic representation of the
RPA for the vdW force between two materials with responses
χ1;2. (c) Diagrams for the RPA response for each material, where
the bare polarization χ0 is denoted as 0. (d) An armchair GNR of
width w ¼ ðN þ 1Þa=2, where N is the total number of the
armchaired C lines and a is the graphene lattice constant.

TABLE I. Approximate vdW forces for 1D materials

1D materials Force per unit length

Metals − ℏ
8πd3

ffiffiffiffiffiffiffiffiffi
n1De2

m

q
1

½2 lnðd=wÞ�3=2

Insulators − 135π
4096

ℏ
ω3
0

�
n1De2

m

�
2 1
d6

σ ¼ const − 3ℏσ
128

1
d4 lnðd=wÞ

Thermal − πkBT
64

1
½d lnðd=wÞ�2
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mðω2
0 − ω2Þ, with n1D being the 1D particle density, m

being the carrier effective mass, and ω0 the optical
transition frequency. In this case, we find that f ∼ 1=d6.
For metals, ω0 → 0 in the Drude-Lorentz response. It is
obtained that f ∼ ½d ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnðd=wÞp �−3. Both characteristic
behaviors agree with previous results found via other
methods [14]. However, the strength of the Lifshitz formula
approach is that it provides analytical expressions which
may show additional characteristics influencing the
strength of the force. Hypothetical 1D materials with σ ¼
const are also considered. Such materials have the similar
Dirac nature carriers as graphene, but they are one dimen-
sional [22]. In this case, f ∼ d−4 ln ðd=wÞ−1 as opposed to
graphene, whose force per unit area has a distance
dependence of ∼d−4 [14].

GNR response function.—The ribbons from Fig. 1(a) are
taken to be armchaired with structure and nomenclature
shown in Fig. 1(d).The GNR dielectric response is deter-
mined by the optical transitions between valence and
conduction bands, originating from the finite width,

according to a set of selection rules [23]. The energy of
the conduction and valence states, denoted as s ¼ �,
respectively, is calculated using a nearest-neighbor tight
binding model. We take into account the energy levels
closest to the Fermi level for which the small q approxi-
mation is valid. In this case, the energy is given by

En;sðqÞ ¼ sℏv0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þ q2

q
; (7)

where v0 ¼
ffiffiffi
3

p
at0=ð2ℏÞ is the graphene Fermi velocity,

t0 ¼ 3 eV is the nearest neighbor hopping integral, and a ¼
2.46 Å is the graphene lattice constant. Also, kn ¼ nπ=w −
4π=3a with n counting the ribbon substates. The narrow
ribbons are essentially semiconductors with a width de-
pendent energy gap Eg [24].
The calculation of the GNR RPA response, shown in

Fig. 1(c), requires a multiband model. For a diagram with p
bubbles,

χpðx;x0;q;ωÞ¼ 1

w2p

X
½np;n0p;sp;s0p�

χnn1;ss10 ðq;ωÞvnn1n01n2ðqÞχ
n2n02;s2s

0
2

0 ðq;ωÞ…vnðp−1Þnpnp 0n0 ðqÞχ
n0pn0;s0ps0

0 cos½ðkn−kn0 Þx�cos½ðkn−kn0 Þx0�;

(8)

vnmn0m0 ðqÞ ¼ 2e2
Z

w

0

dx1

Z
w

0

dx2K0ðqjx − x0jÞ cos ½ðkn − kmÞx1� cos ½ðkn0 − km0 Þx0�; (9)

χnn
0;ss0

0 ðq;ωÞ ¼ g
L

X
ky

f½En;sðky þ qÞ − μ� − f½En0;s0 ðkyÞ − μ�
En;sðky þ qÞ − En0;s0 ðkyÞ − ℏω

× Jnn0;ss0 ðky; qÞ; (10)

where […] gives the sum over integers 1…p, and g is the
electron spin degeneracy. Also, fðEn;s − μÞ is the Fermi-
Dirac distribution and μ is the chemical potential. The wave
functions for the (n, s) states are not given here as they can
be found in Ref. [25]. The wave functions overlap integral
is Jnn0;ss0 ðky; qÞ ¼ 1

2
ð1þ ss0 cos θÞ, where θ is the angle

between the vectors (kn, ky þ q) and (kn0 , ky) [25].
An important feature is noted for the GNR Coulomb

interaction at shorter distances. The integral in Eq. (9) is
dominated by the transitions n ¼ n0, m ¼ m0, giving
vðqÞ ¼ vRðqÞ≡vnn;n0n0 ðqÞ=ðw2Þ≈ e2½3−2γ−2 lnðqw=2Þ�.
Thus summing the bubble diagrams result in the same
expression for the RPA response as in Eq. (4) with
χ0ðq;ωÞ ¼

P
nn0;ss0χ

nn0;ss0
0 ðq;ωÞ, and with the Coulomb

potential being vRðqÞ.
Quantum dispersion forces for GNRs.—To calculate the

GNR interaction, μ ¼ 0 and T → 0 is considered first. The
response is then due to the interband transitions (between

s ¼ þ and −), and the vdW force is determined by larger
frequency excitations. As a result, the sum over ωl in
Eq. (6) becomes an integral,

P
l → ½ℏ=ð2πkBTÞ�

R∞
0 dω.

Obtaining explicitly the distance dependence in f becomes
possible using the interband polarization

χinter0 ðq;ωÞ ¼ −X
n

2v0
ℏ

q2
Z

π=ð ffiffi3p
aÞ

0

dky
π

×
k2n

ðk2n þ k2yÞ3=2
1

4v20ðk2n þ k2yÞ − ω2
; (11)

where n sums the low energy bands for which the model for
Eq. (7) is valid. Figure (2) shows the interband conductivity
for two narrow ribbons, where σinterðq;ωÞ ¼
ie2ωχinter0 ðq;ωÞ=q2. Note the shift in the conductivity peaks
towards smaller frequencies as the GNR width increases.
Using Eq. (6), the vdW force between the ribbons is
calculated as
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f ¼ − A
a2

�
a
d

�
6

; (12)

where A ¼ 0.035 eV for N ¼ 7 and A ¼ 0.092 eV for
N ¼ 10. The constant A depends on the particular ribbon
and it increases as N increases. The vdW force was also
calculated via dielectric response in which the tight binding
energies without the long wavelength approximation was
used [26]. We note that the characteristic behavior of the
force is preserved and the results do not differ significantly
from those found by Eq. (12).
We compare these findings with the calculations in

Table I. It is seen that the distance dependence of the
vdW interaction between GNRs is the same as that of a
typical 1D dielectric. This behavior is essentially due to the
presence of a relatively large energy gap in the band
structure of the ribbons. We also note that the tight-binding
model in Eq. (7) is suitable for GNR separations ∼50 nm or
larger. For shorter distances, a more complete energy band
structure is needed to account for higher optical transitions,
as it has been shown for the interaction between graphene
layers [27].

The chemical potential and thermal effects.—Switching on
the chemical potential μ and raising the temperature has
important effects on the GNR response. As μ is increased to
∼Eg=2, the effect from the interband transitions at room
temperature becomes small compared to the low frequency
intraband response. At low ω, high T, and large μ, one
obtains

χintra0 ðqÞ ≈ −2X
n

1

kBT

Z
π=ð ffiffi3p

aÞ

0

dky
π

×
coshðjEnj=kBTÞ coshðμ=kBTÞ þ 1

½coshðμ=kBTÞ þ coshðjEnj=kBTÞ�2
: (13)

Figure (2) shows that at μ ∼ Eg=2 ≈ 0.7 eV (N ¼ 7) and
μ ∼ Eg=2 ≈ 0.5 eV (N ¼ 10), χintra0 experiences a large
increase completely dominating the GNR response. The
critical point where that happens is when μ corresponds to

the energy at the bottom of the lowest conduction band, while
the second peak in the interaction for N ¼ 10 occurs when μ
corresponds to the energy at the bottom of the second lowest
conduction band.
The much enhanced low frequency, intraband response,

and suppressed high frequency interband response at larger
temperatures affects the interaction significantly. More
specifically, the quantum mechanical contribution in the
vdW force is overtaken by the thermal fluctuations given by
the l ¼ 0 term in Eq. (6):

fT ¼ −kBT
Z

∞

0

qdq
π

K1ðqdÞ
K0ðqdÞ

½vðq; dÞχintra0 ðqÞ�2
½1 − vðqÞχintra0 ðqÞ�2 ; (14)

where K1 is the first-order modified Bessel function of the
second kind. The significant enhancement of fT as a
function of μ is shown in Fig. 3(a), which correlates with
the increase in χintra0 vs μ from Fig. 2(b).
fT is further analyzed to understand how the specific

forms of the Coulomb potential and the GNR response
function χintra0 influence the force. One notes that when χintra0

is large, ρB [Eq. (6)] can be approximated as ρB ≈ 1. Taking
vðqÞ ¼ v0ðqÞ≡−2e2 lnðjqjwÞ, an analytical expression
for fT is derived (Table I). The log-log plot in Fig. 3(b)
shows that the analytical formula has a similar behavior as
the numerically calculated fT using Eq. (6) with ρB ¼ 1. It
turns out that taking the Coulomb potential for the GNR
vRðqÞ ¼ e2½3 − 2γ þ lnð4Þ − 2 lnðjqjwÞ� instead of v0ðqÞ
or keeping χintra0 explicitly in ρB affects the force signifi-
cantly. Although the calculated log-log dependence is
approximately linear in all cases, the slopes and intercepts
are different. Our numerical calculations show that
fTa2 ≈ −0.000163ða=dÞ2.26 ½eV� for ρBðχintra0 Þ and vRðqÞ,

FIG. 3 (color online). (a) Magnitude of thermal vdW force
between two GNRs (N ¼ 7, N ¼ 10 carbon lines) vs the chemical
potential at T ¼ 300 K. (b) Log-Log plot of the 1D thermal vdW
force vs scaled d=a separation at T ¼ 300 K. χintra0 is used for
armchair GNRs with N ¼ 7. Also, f × a2 is in units of eV.
Estimated power laws: ðanalyticÞ→fa2¼0.00144ða=dÞ2.53,
½ρB¼1;v0ðqÞ�→fa2¼0.00116ða=dÞ2.46, ½ρB¼1;vRðqÞ�→fa2¼
0.000308ða=dÞ2.32, ½ρBðχintra0 Þ;v0ðqÞ�→fa2¼0.000407ða=dÞ2.35Þ,
½ρBðχintra0 Þ; vRðqÞ� → fa2 ¼ 0.000163ðd=aÞ2.26.

FIG. 2 (color online). (a) Real and imaginary parts of the
conductivity σ, in units of σ0 ¼ ae2=ℏ, vs frequency for two
armchaired GNRs with N ¼ 7, 10. (b) The magnitude of χintra0 vs
μ for armchaired GNRs with N ¼ 7, 10, and T ¼ 300 K.
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while fT ≈ −0.00116ða=dÞ2.46 ½eV� for ρBðχintra0 Þ ¼ 1 and
v0ðqÞ. Other estimates are shown in the figure.
We remark that in regular 3D dielectrics and metals,

thermal effects in the vdW force are usually very small,
because the dielectric response at low ω is much smaller as
compared to the one for large ω. As a result, Matsubara
frequencies with large l, characteristic for the quantum
mechanical regime, dominate the interaction. Graphitic
nanostructures allow for unprecedented opportunities to
access the previously unavailable thermal fluctuations
regime in a modulating fashion. It was shown in recent
studies [6] that the graphene vdW force is always thermal at
separations d > 50 nm - FT ¼ −kBT=ð8πd3Þ. Note that FT
is the same as the one for two 3D half-spaces; thus, the 2D
nature does not play a role in obtaining this characteristic
behavior. For GNRs, however, one can tune the vdW
thermal effects upon changing μ as the dimensionality is
crucial for the unique distance behavior [Table I, Fig. (3)].
This type of control of the vdW thermal effects via the

chemical potential is also possible for carbon nanotubes.
Although the quantization occurs due to the zone folding
around the circumference, the carbon nanotube response
properties exhibit similar behavior in terms of inter- and
intraband transitions [28] affected by μ as the ones for the
GNRs. We also consider GaAs quantum wires, which are
typical narrow 1D structures [29] with a response function
χðq;ωÞ ¼ ω2

pðqÞ=½ω2 − ω2
pðqÞ�, with plasma frequency

ω2
pðqÞ ∼ ð2n1De2=mÞq2j lnðqwÞj and corresponding

Coulomb potential vðqÞ ¼ 2e2ðj lnðqwÞj þ 1.972…Þ. At
T ¼ 0, using Eq. (6) one finds that the vdW force is
similar to the one for a metallic wire (Table I). As T is
increased, the long wavelength plasmon dispersion does
not change significantly [29] and the force is completely
dominated by the l ¼ 0Matsubara term (thermal, Table I).
This can be understood by comparing the relevant analytical
expressions for the force in Table I, showing that
ℏωp;0ðw=dÞ ≪ kBT, where ω2

p;0 ¼ 2n1De2=mw2. Since
ωp;0 is much reduced than the bulk plasma frequency
[29], the thermal vdW force is dominant in such wires at
room temperature. It should also be noted that as the width of
the graphene nanoribbons becomes larger, thermal effects
become more significant even for low chemical potential.

Conclusion.—In summary, a Lifhsitz-like formula for the
vdW force, derived using RPA, between 1D materials is
presented and applied to GNRs and some typical materials.
The detailed calculations of the nanoribbon response
properties allowed us to uncover the possibility for quan-
tum mechanical to thermal transitions. The GNR optical
properties tunability enables the onset of such effects in
quasi-1D systems, which can be used to access previously
unattainable regimes in vdW forces in most typical 3D
materials.
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