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We derive a scaling relationship for the mean square rotation rate of rods with lengths in the inertial range
in turbulence: hp: ip: ii ∝ l−4=3. We present experimental measurements of the rotational statistics of neu-
trally buoyant rods with lengths 2.8 < l=η < 72:9, and find that the measurements approach the predicted
scaling. The approach to inertial range scaling is shown to be more complex than anticipated with an
overshoot and approach to the scaling from above. For all rod lengths, the correlation time of the Lagrangian
autocorrelation of the rotation rate scales as the turnover time of the eddies of the size of the rod. Measuring
rotational dynamics of single long rods provides a new way to access the spatial structure of the flow at
different length scales.
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The dynamics of particulate material in fluid flows is
important in a broad range of problems in nature [1,2]
and industry [3]. Extensive work on small spherical par-
ticles has revealed a rich phenomenology with applications
in cloud physics and sedimentation [4–7]. Studies of par-
ticle dynamics have also provided new insights into turbu-
lence itself since a Lagrangian reference frame minimizes
sweeping and provides the natural frame for analyzing the
time evolution of turbulence [6]. However, connecting a
Lagrangian perspective with traditional insights about
inertial range power law scaling has been difficult because
statistics of changes over Lagrangian time intervals do not
show clear inertial range scaling at accessible Reynolds
numbers [8]. Rigid particles with lengths that extend
into the inertial range provide a powerful tool to explore
turbulence dynamics at a fixed scale in an advected
reference frame.
For large spheres, it has been found in both experiments

[9–12] and numerical simulations [13,14], that the acceler-
ation variance scales with the sphere diameter approxi-
mately as ha2i ∼ d−2=3 for d in the inertial range [9–12].
This result can be obtained by dimensional arguments sim-
ply assuming that the sphere terminates the cascade at its
diameter [9]. It can also be derived from the inertial range
form of the pressure structure function or the acceleration
correlations [10–12]. Measuring the acceleration of large
spheres provides access to the statistics of the turbulence
at scales equal to the size of the spheres using only single
particle measurements. Recent experimental work by Volk
et al. [12] finds that the d−2=3 scaling is not exact and pro-
poses a scaling of d−0.81 by including intermittency in the
pressure structure function.
In this Letter, we study the rotations of rods with lengths

that extend into the inertial range. Measurements and sim-
ulations of small rodlike particles have shown preferential
alignment with the velocity gradients of the flow [15,16]
and this alignment suppresses the measured rotation rate

in turbulent flows [17,18]. A wide range of experimental
and numerical studies have explored the dynamics of
neutrally buoyant small rods and fibers in different flows
[19–23]. Only a few studies have focused on the dynamics
of long rods in turbulence, where rod length spans over
many times η, the Kolmogorov length scale [17,24].
Using numerical simulations and slender body theory,
Shin and Koch [17] studied the translational and rotational
dynamics of long fibers in turbulent flow at Taylor
Reynolds number up to Rλ ¼ 53:3. Among other things
they show how the mean square rotation rate decreases
as rods become longer than the tracer limit and identify
the key role played by alignment of rods.
For large rodlike particles, the analytical theory to deter-

mine particle motion given the fluid fields can be done
much more rigorously than for large spheres. For spheres,
Faxén corrections can be used to extend point particle mod-
els to describe large spheres [25], but these models have
difficulties when particles are much larger than η [13].
For rods, Olson and Kerekes [24] calculated the rotational
velocity of fibers by treating them as slender bodies com-
posed of many sections smaller than η which are hydrody-
namically independent. For a neutrally buoyant fiber of
length l, the rotation rate is

p
:
i ¼

12

l3

Z
l=2
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ðδij − pipjÞujðrÞrdr; (1)

where p is the orientation unit vector of the fiber and u
is the turbulent velocity at points along the fiber [17]. If the
orientation of a rod is uncorrelated with the velocity field in
Eq. (1), then the mean square rotation rate of randomly ori-
ented long rods is [24]
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where ~u2 is the rms velocity of the fluid flow and RNNðrÞ is
the fluid transverse velocity correlation function at separa-
tion distance of r. Shin and Koch [17] show that Eq. (2) is
in good agreement with their simulations for the case of
randomly oriented rods.
We introduce a scaling for the mean square rotation

rate of rods with lengths in the Kolmogorov inertial range.
This scaling can be obtained either from dimensional argu-
ments or from Eq. (2). The rotation rate has dimensions of
inverse time, so for tracer rods it scales with the
Kolmogorov time scale, hpi

:
pi
: i ∼ τη

−2. Assuming that long
rods are only rotated and aligned by eddies close to their
size, the mean square rotation rate for rods at length scale l
will scale like τl−2, where τl is the time scale of eddies of
size l. In the inertial range, the time scale τl can be defined
as τl ¼ l=ul ¼ l=ðlhϵiÞ1=3Þ, where ul is the velocity at
length l, and hϵi is the mean energy dissipation rate.
This dimensional argument gives hpi

:
pi
: i ∼ l−4=3 for l in

the inertial range.
The same l−4=3 scaling can be obtained using Eq. (2),

with the additional benefit that the coefficient can be
determined in terms of known parameters. In homogeneous
isotropic turbulence, the transverse correlation function in
the inertial range is RNNðrÞ ¼ 1 − ð2=3~u2ÞC2ðhϵirÞð2=3Þ,
where C2 is an approximately universal constant [26,27],
so in the inertial range

hpi
:
pi
: i

ðhϵi=νÞ ¼
108

35
C2

�
l
η

�−4=3
; (3)

where ν is the kinematic viscosity. Here we use the fact
that only scales near the length of the rod contribute to
the rotation rate in Eq. (2) so that in the high Reynolds
number limit the inertial range form of the structure func-
tion can be used for all r.
We have performed a series of experiments to measure

the rotation of rods in three-dimensional turbulence for rod
lengths that extend from the dissipation range well into the
inertial range to explore whether an l−4=3 scaling range
exists. We measure neutrally buoyant rodlike particles with
lengths ranging from 2.8η up to 72:9η in a turbulent flow
between oscillating grids [28]. The rods are nylon thread
with a diameter of 0.2 mm and are cut to different lengths
(l ¼ 1, 3, 6.8, 15.2 mm). All particles are dyed fluorescent
for better detection. The rotational dynamics of rods are
measured using stereoscopic images from four high speed
cameras [18]. The detection volume is illumined with four
laser beams. This has nearly removed a limitation in earlier
experiments [18] where the probability of detecting a
particle depended on the orientation of the particle with
respect to the laser beam. The number density of rods is
very small so particle-particle interactions are negligible.
The particle concentration is 0.025 cm−3 for 1 mm rods,
and 0.0075 cm−3 for the longest rods at 15.2 mm.

The rotation rate vector of rods, _p, is measured from
quadratic fits to the measured orientations along trajectories
versus time. The measurements are at two different Taylor
Reynolds numbers (Rλ ¼ 150, 210). We have done parallel
experiments with tracer particles to measure the turbulence
parameters. From measured tracer velocities, we extract the
third order longitudinal structure functions and obtain the
energy dissipation rate hϵi from Kolmogorov’s 4=5 law.
Flow parameters are shown in Table I.
Figure 1 shows the probability distribution function

(PDF) of the rotation rate squared, p
:
ip
:
i, normalized by

the mean for different rod lengths. The PDF shows only
a weak dependence on the rod length. The probability of
rare events is somewhat smaller for long rods (l=η > 20)
than for tracer rods (l=η < 7); however, this difference is
only slightly larger than the measurement uncertainty
due to the smaller number of samples for long rods. The
error bars represent the random statistical error and the sys-
tematic error in measuring the rotation rates. Qualitatively,

TABLE I. Table of flow parameters: Rλ ¼ ð15~uL=νÞ1=2, Taylor
Reynolds number; ~u ¼ ðuiui=3Þ1=2, rms velocity of the flow; hϵi,
energy dissipation rate; L ¼ ~u3=hϵi, energy input length scale;
η ¼ ðν3=hϵiÞ1=4, Kolmogorov length scale; τη ¼ ðν=hϵiÞ1=2,
Kolmogorov time scale. ν is the fluid kinematic viscosity and is
1.75 × 10−6 m2=s.

Rλ ~u ðmm=sÞ hϵi (mm2=s3) L (mm) η (mm) τη (s)

150 30.4 319 87.9 0.36 0.074
210 62.8 2800 84 0.21 0.025
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FIG. 1 (color online). The PDF of the rotation rate squared
for different rod lengths. The lengths of rods are l=η ¼ 2.8
(green crosses), 4.9 (black filled circles), 8.5 (right triangles),
14.5 (open squares), 19.1 (red open circles), 32.8 (blue diamond),
42.2 (brown left triangles), and 72.9 (purple asterisks), and tracers
from simulation (solid gray line). The results are reported from
two experiments at Rλ ¼ 150 and 210. The simulations [18] are
for tracer rods at Rλ ¼ 180.
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the rotation rate PDF depends on rod length in the same
way that the acceleration PDF for large spheres depends
on the diameter [12].
The mean square rotation rate for different rod lengths

is shown in Fig. 2(a). The measurements show smaller
rotation rates for longer rods as expected since longer rods
should begin to filter out the contributions from eddies
smaller than their length. Figure 2(a) also shows the mean
square rotation rate for randomly oriented rods predicted
from Eq. (2) using our experimental measurements of
RNN at Rλ ¼ 150 and 210. The measured mean square rota-
tion rate is much smaller than the prediction for randomly
oriented rods of the same length (l=η). However, this differ-
ence decreases as the length of the rod is increased.
Previous studies of tracer rods [15,17,18,29,30] have
shown that as rods are carried by the flow their orientation
becomes correlated with the directions defined by the
velocity gradient tensor. This alignment results in the sup-
pression of the rotation rate of short rods compared to ran-
domly oriented rods [18]. The smaller differences between
the measured rotation rates of long rods and randomly
oriented rods suggests that the alignment is slightly weaker
for long rods.
Figure 2(b) shows the inertial range scaling from Eq. (3)

with C2 ¼ 2.0 and compares it with the experimentally
measured rotation rates and the prediction of Eq. (2) for ran-
domly oriented rods using the measured velocity correlation
function. Both the measured rotation rates and the predic-
tion of Eq. (2) approach an l−4=3 scaling for large l. The
mean square rotation rates measured experimentally have
smaller coefficients than the prediction of the l−4=3 scaling
due to the alignment of rods with the directions defined by

velocity gradients of the flow. For comparison we also show
the results of simulation of rods at Rλ ¼ 53 by Shin and
Koch [17] in Fig. 2(b). This simulation also approaches
the l−4=3 scaling in the same range of rod lengths. For short
rods, the experiments are somewhat above the simulations.
This may be a result of different forcing which could be
significant at these low Reynolds numbers, or it may reflect
errors in the measured energy dissipation rate.
For l > 30η in Fig. 2(b), one could fit the data with a

different exponent slightly steeper than l−4=3 scaling within
the error bars of the experimental data. In this same range,
the prediction of Eq. (2) is also steeper than l−4=3. The cause
of the steeper scaling can be found in the fact that the
prediction of Eq. (2) overshoots the power law scaling in
the range 20η < l < 50η. This overshoot occurs in the range
of scales slightly larger than the dissipative range because
scales smaller than the length of the rod contribute to the
rotation rate. The simulation results from Ref. [17] in
Fig. 2(b) do not appear to have a steeper slope than the
l−4=3 scaling. However, at the Reynolds number of that
simulation, the integral length scale is only 28η, so it is dif-
ficult to separate the effects of the forcing. We have used
Batchelor’s parametrization [31,32] of the structure func-
tion at a very high Reynolds number to remove the effects
of the limited inertial range for RNN in the prediction of
Eq. (2). Figure 2(c) compares the prediction of Eq. (2) using
Batchelor’s parametrization with the l−4=3 scaling from
Eq. (3). The agreement is nearly perfect for rod lengths
longer than 100 η, well in the inertial range. The predi-
ction using Batchelor’s parametrization has the same over-
shoot for rods between 20η < l < 100η that we see in the
experimental data.
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FIG. 2 (color online). Mean square rotation rate as a function of rod length. (a) Comparison of the experimental data at Rλ ¼ 150
(red open circles) and 210 (red diamonds) with the model of randomly oriented rods at Rλ ¼ 150 (purple up triangles) and Rλ ¼ 210
(black right triangles). (b) Comparison of the mean square rotation rate of rods (red open circles and diamonds) and the model for
randomly oriented rods (up and right triangles) with the l−4=3 inertial range scaling law (solid green line) and the simulation by Shin and
Koch [17] (grey squares). (c) Comparison of the inertial range scaling law (green solid line) with the model for randomly oriented rods
using Batchelor’s parametrization for very large Reynolds number (purple triangles).
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The slightly steeper scaling of the rod rotation rate is sim-
ilar to the effect observed in Ref. [12] for the accelerations
of spheres with diameters in the inertial range. They argue
that intermittency effects are responsible for the difference
between their measured scaling and the prediction of dimen-
sional analysis. It is possible that intermittency effects also
play a role for rods. However, the availability of a theoretical
foundation for calculating the rotation rates of long rods
suggests another possible explanation due to the effects
of dissipation range scales. As shown in Fig. 2(c), the over-
shoot occurs even when using Batchelor’s parametrization
which has no intermittency effects. It is possible that spheres
also have an overshoot caused by dissipation range scales
which leads to the observed scaling.
To measure the mean square rotation rate, we use the

extrapolation method developed in Ref. [9] to remove the
dependence on the smoothing used to measure derivatives.
We have performed a simulation of the detection process
similar to Ref. [9] and find the extrapolation overestimates
the mean square rotation rate by 6% which we correct by a
6% shift. The error bars in Fig. 2 represent both the system-
atic error from extrapolation and the random error measured
by analyzing subsets of the data. The random error is a
larger fraction of the rotation rate for longer rods as seen
in Fig. 2(b) due to the smaller number of samples.
Figure 3(a) shows the Lagrangian autocorrelation of the

rotation rate measured for different rod lengths. Our mea-
surements show that the correlation time of the rotation rate
increases with rod length. Similar autocorrelation functions
were obtained in simulations [17] at Rλ ≤ 53. We expect
that if the rods are rotating due to eddies of their size l,
then the decay time for the correlation of rotation rate
should scale as the turnover time at the length of the rods.
In Fig. 3(b) the horizontal axis (t) is normalized by τl, the
time scale of eddies with length scale l. After this normali-
zation, the Lagrangian autocorrelation of the rotation rate
for all rod lengths collapse on a single curve within meas-
urement uncertainty. The time scales for short tracer rods
(l=η < 5) is the Kolmogorov time scale (τη) and the time
scales for longer rods are measured from longitudinal sec-
ond order velocity structure function of the fluid particles
[τl ¼ 1ffiffiffiffi

15
p l=δul ¼ 1ffiffiffiffi

15
p l=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DLLðlÞ

p
]. Measuring the autocor-

relation function for long rods (l ¼ 42:4η and 72:9η) is dif-
ficult because the rods span a significant fraction of the
detection volume and so the trajectories are not long
enough to measure long time autocorrelations. The collapse
seen in Fig. 3(b) provides additional evidence, beyond that
seen in the mean square rotation rate data, that rod rotations
are controlled by eddies with size near the rod length.
Long rods provide a promising path for studying the

dynamics of large particles in turbulence. For rods, slender
body theory can be used to connect particle motion with the
fluid flow even for particles much larger than the
Kolmogorov scale while the analytical results for spheres
are only available for small deviations from the small

particle limit. We have presented measurements of the
rotations of rods with lengths extending well into the iner-
tial range, and find that the mean square rotation rate
approaches the l−4=3 scaling that we predict from inertial
range scaling of the velocity structure functions. The ana-
lytic prediction of rod rotation rate from the measured
structure functions allows a new insight concerning the
way the mean square rotation rate overshoots the scaling
law for scales between the dissipation and inertial range.
The PDF of rotation rate shows only a weak dependence
on rod length. We find that rods develop preferential
alignment so that their rotation rates are significantly
smaller than that predicted for randomly oriented rods.
The Lagrangian autocorrelation time of the rotation rate
depends on the length of rods and scales with the eddy
turnover time at a scale equal to the rod length.
Shin and Koch [17] provided a ground breaking

simulation data set on this problem, but were limited to
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FIG. 3 (color online). Lagrangian autocorrelation of the rota-
tion rate for different rod length. The lengths of rods are l=η ¼
2.8 (green crosses), 4.9 (black filled circles), 8.5 (right triangles),
14.5 (open squares), 19.1 (red open circles), 32.8 (blue diamond),
42.2 (brown left triangles), and 72.9 (purple asterisk). (a) Time is
normalized by the Kolmogorov time. (b) Time is normalized by
the turnover time of eddies with sizes equal to the length of the
rods, τl. The symbols are displayed at every other data point.
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Rλ ≤ 53:3 where there is no considerable inertial range.
A future numerical simulation at high Reynolds number
using their method of simulating long fibers offers the pos-
sibility to study the motion of inertial range rods while also
having access to the full velocity field around the rods.
Experimental tracking of long rods in turbulence allows
access to the dynamics of turbulent scales at the length
of the particle from single particle measurements, and
has potential to provide valuable information about
Lagrangian dynamics as a function of the scale in complex
turbulent flows.
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