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As discovered by Philip Anderson in 1958, strong disorder can block propagation of waves and lead to
the localization of wavelike excitations in space. Anderson localization of light is particularly exciting in
view of its possible applications for random lasing or quantum information processing. We show that,
surprisingly, Anderson localization of light cannot be achieved in a random three-dimensional ensemble of
point scattering centers that is the simplest and widespread model to study the multiple scattering of waves.
Localization is recovered if the vector character of light is neglected. This shows that, at least for point
scatterers, the polarization of light plays an important role in the Anderson localization problem.

DOI: 10.1103/PhysRevLett.112.023905 PACS numbers: 42.25.Dd, 42.25.Ja

Anderson localization—the appearance and dominance
of localized states in strongly disordered systems—is
believed to be a universal phenomenon for all quantum
and classical waves [1–3]. In particular, three-dimensional
(3D) disordered systems are expected to exhibit a transition
from the “metallic” phase with extended states to the
“insulating” one with localized states, upon increasing
the disorder [4]. This transition was observed for electrons
in disordered solids [5], ultrasound [6], and cold atoms
[7–9]. Reports of the Anderson localization of light in
3D also exist [10–12]. Here, we present a theoretical study
of light scattering in a 3D ensemble of resonant point
scatterers (atoms) at random positions. We show that
Anderson localization takes place only in the scalar
approximation and disappears when the vector character
of light is taken into account. Our results raise the issue of
the role that polarization effects play in the problem of
Anderson localization of light in general. They suggest that
it might be important to better understand these effects in
more complex photonic media used in experiments: semi-
conductor [10,13] or dielectric [11,12] powders, porous
semiconductors [14], or disordered photonic crystals [15].
The point-scatterer model is useful to understand the

generic behavior of waves in disordered media [16,17]. In
addition, this model is excellent for ensembles of cold
atoms that, therefore, provide a fantastic and practically
realizable playground for testing the theory [18]. Let us
apply the point-scatterer model to study the Anderson
localization of light and try to go as far as possible without
additional approximations. For concreteness, we assume
that the point scatterers are immobile two-level atoms each
having a nondegenerate ground state jgii with energy Eg
and the total angular momentum Jg ¼ 0 and an excited
state jeii with Ee ¼ Eg þ ℏω0, Je ¼ 1, and lifetime 1=Γ0

(ℏ is the Planck’s constant and the index i ¼ 1;…; N
denotes quantities corresponding to the atom i among N
atoms). The excited state is thus triply degenerate and splits

in three substates jeimi with different projections m ¼ −1,
0, 1 of the angular momentum Je on the quantization axis z.
The system is described by a standard Hamiltonian [19,20]
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D̂i⋅ÊðriÞ

þ 1

2ϵ0

XN
i≠j

D̂i⋅D̂jδðri − rjÞ; (1)

where the first two terms correspond to noninteracting
atoms and the free electromagnetic field, respectively, the
third term describes the interaction between the atoms and
the field in the dipole approximation, and the last, contact
term ensures the correct description of the electromagnetic
field radiated by the atoms [19]. Here, â†ks and âks are
operators of creation and annihilation of a photon having
the wave vector k and the polarization s, c is the speed of
light in free space, D̂i is the dipole operator of the atom i,
and ÊðriÞ is the electric displacement vector divided by the
vacuum permittivity ϵ0 at the position ri of the atom i.
Formally solving Heisenberg equations of motion for âks,
substituting the solution into equations for atomic oper-
ators, and applying the so-called polar approximation (i.e.,
neglecting retardation effects [21]), one obtains a system of
equations for the latter operators only, with the coupling
between atoms described by the so-called “Green’s matrix”
G [22–24]. It is essentially built up of Green’s functions of
Maxwell equations, describing the propagation of light
from one atom to another. G is a 3N × 3N random matrix
of which a particular realization is determined by the
ensemble of random positions frig of N atoms in 3D
Euclidean space [22,23]
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Here, deimgi ¼ hJemjD̂ijJg0i is the matrix element of the
dipole moment operator D̂i, rij ¼ ri − rj, and k0 ¼ ω0=c.
The superscripts μ and ν denote projections of vectors on
axes of the reference frame. Note that Eq. (2) exhibits a
1=r3ij singularity for rij → 0 that can be related to the
transverse nature of electromagnetic waves.
Any excitation of the ensemble of N atoms coupled

through the electromagnetic field can be expanded over
eigenvectors ψn of the matrix G. The real and imaginary
parts of its eigenvalues Λn yield the frequencies ωn ¼
ω0 − ðΓ0=2ÞReΛn and decay rates Γn=2 ¼ ðΓ0=2ÞImΛn of
the corresponding eigenstates. G is therefore the funda-
mental object to study in order to understand the behavior
of collective excitations in the atomic ensemble. We will be
interested in the spatial localization of ψn and will compare
the properties of the matrix (2) that takes into account the
vector character of light with those of its scalar approxi-
mation

Geiej ¼ iδeiej þ ð1 − δeiejÞ
eik0rij

k0rij
(3)

that is often used to further simplify the problem [25,26].
Note that Eq. (3) has a weaker singularity for rij → 0 than
Eq. (2). Matrices similar to Eqs. (2) and (3) were previously
studied in Refs. [27–29].
The vector character of light is considered to be

irrelevant for the Anderson localization problem in a
medium with a fluctuating dielectric constant [30–32].
However, our model (1) is fundamentally different because
it does not reduce to the macroscopic Maxwell equations in
the interesting regime of intermediate atomic density
ρ ∼ k30. Therefore, significant differences between vector
and scalar cases cannot be excluded beforehand.
We first analyze the density of eigenvalues Λ of the

Green’s matrices defined by Eqs. (2) and (3) with particular
attention paid to the part of the spectrum corresponding to
long-lived states with ImΛ < 1. Random realizations of
Green’s matrices were generated by randomly choosing
N ¼ ð2–8Þ × 103 points in a sphere of radius R and volume
V [see the inset of Fig. 1(d)]. Their eigenvalues Λn and
eigenvectors ψn ¼ fψneimg obeying Gψn ¼ Λnψn were
computed for a sufficient number of random realizations.
The density of eigenvalues Λ for N ¼ 4 × 103 is

showninFig.1.Atlowdensitiesρ ¼ N=V, theresultsobtained
for scalar and vector models are similar, with most of the
eigenvalues being restricted to a region delimited by a line
following from the diffusion theoryof light scattering [24,25].
At densities exceeding ρ=k30 ≈ 0.1, however, we observe that
in the scalar model, a significant fraction of eigenvalues cross
this lineandacquireverysmalldecay rates ImΛ.Nosuch long-
lived states appear in the vector model.
To test the intuitive conjecture that the long-lived states

corresponding to eigenvalues with small imaginary parts
may be localized in space, we show in Fig. 2 maps of
the average inverse participation ratio (IPR) for the
same parameters as in Fig. 1. IPRn ¼

P
N
i¼1 jψnei j4=ðPN

i¼1 jψnei j2Þ2 quantifies the degree of spatial localization
of the eigenvector ψn. It is of order 1=M for an eigenvector
localized on M atoms. In the vector model, each ψnei is a
vector with three components ψneim and jψnei j should be
understood as its length. As we see from Fig. 2, states
localized on a small number of atoms exist even at small
densities. They are typically localized on pairs of very

FIG. 1. Density of eigenvalues of the random Green’s matrix.
Gray scale density plots of the probability density pðΛÞ for Λ
values corresponding to long-lived states (ImΛ < 1). Dashed
lines show the border of the eigenvalue domain following from
the diffusion theory and the spiral branches along which
eigenvalues corresponding to subradiant states are concentrated
[24,25]. Panels (a) and (b) correspond to a low density of atoms at
which the majority of eigenvalues are contained within the
boundary imposed by the diffusion theory. Panels (c) and (d)
correspond to a high density, for which states with very small
decay rates ImΛ appear in the scalar model, but not in the vector
one. The smallest ImΛ of the vector model is even larger than the
prediction of the diffusion theory. The inset of panel (d) shows N
atoms (black dots) randomly distributed in a sphere of radius R.
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closely located atoms and are due to the phenomenon of
subradiance that does not require multiple scattering and,
therefore, has nothing to do with Anderson localization
[24–26]. Their eigenvalues are concentrated along the
dashed lines that depict the evolution of the smallest
eigenvalue of a 2 × 2 Green’s matrix as the distance
between the two atoms is varied. In the scalar model,
however, localized states of a different type appear at
densities larger than ρ=k30 ≈ 0.1. These states have very
small decay rates, in agreement with Fig. 1. Once again, no
such localized states are seen in the vector case.
To convince ourselves that the localized states appearing

at large densities in the scalar model are due to Anderson
localization, we perform the scaling analysis [33]. We
compute the average dimensionless lifetime of eigenstates
h1=ImΛi ¼ δω−1 and the average spacing of nearest
dimensionless eigenfrequencies Δω ¼ hReΛn − ReΛn−1i
for eigenvalues Λn in a strip of unit width around ReΛ ¼
−1 where, according to Figs. 1 and 2, the localization
effects are important in the scalar model. The localization
transition for light at frequency ω ¼ ω0 þ Γ0=2 is expected
to take place when the Thouless number (also called
dimensionless conductance) g ¼ δω=Δω becomes of order
unity [33,34]. In Fig. 3 we show g as a function of the
bare Ioffe-Regel parameter k0l0, with the on-resonance
mean free path l0 calculated in the independent-scattering

approximation [16]. In the scalar case, the curves gðk0l0Þ
corresponding to different N cross at g ≈ 1, k0l0 ≈ 1, as
expected from the Thouless and Ioffe-Regel criteria of
localization [4]. A second crossing takes place at much
smaller k0l0 (corresponding to a very large density ρ at
which the independent-scattering approximation is not a
good approximation for the mean free path l) and signals
the disappearance of localization; the system starts to
approach the effective medium regime. The closeness of
the latter is manifest in the tendency of eigenvalues Λ with
large imaginary parts to concentrate around points on the
complex plane that correspond to quasimodes of a homo-
geneous sphere with some effective refractive index [25];
such a tendency is observed in both the scalar and vector
models. A finite-difference estimate of the scaling function
βðgÞ ¼ ∂ ln g=∂ ln k0R obtained from all possible pairs of
curves of the main plot is shown in the inset of Fig. 3(a). As

FIG. 2. Inverse participation ratio of eigenvectors. Gray scale
density plot of the average IPR as a function of the eigenvalue Λ
of the corresponding eigenvector. Dashed lines are the same as in
Fig. 1. At low density, subradiant states localized on pairs of
closely located scatterers exist in both scalar (a) and vector (b)
models. These states have IPR≃ 1=2. At high density, Anderson-
localized states with large IPR appear in the scalar model (c), but
not in the vector one (d).
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FIG. 3 (color online). Scaling in scalar and vector models.
(a) Thouless number g as a function of the bare Ioffe-Regel
parameter k0l0 for the scalar model at frequency ω ¼ ω0 þ Γ0=2
and for different N values. The curves cross at g ≈ k0l0 ≈ 1 and
then again at k0l0 ≪ 1 and g ≈ 1. Localization transitions take
place at these points, as confirmed by the analysis of the scaling
function βðgÞ that changes sign at g ≈ 1 (inset). (b) The same for
the vector model. Solid lines in the insets are guides for the eye.
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expected, βðgÞ changes sign at g ≈ 1, confirming Anderson
transition in the scalar model. However, none of the above
signatures of Anderson localization is seen in Fig. 3(b)
where we present the results for the vector model. gðk0l0Þ
corresponding to differentN do not cross, g always remains
larger than 1, and βðgÞ > 0 does not change sign, sug-
gesting no localization transition.
Let us now elucidate the reasons that prevent Anderson

localization in the vector model. In the scalar approxima-
tion, the behavior of our system is analogous to that of a
system of spinless fermions and βðgÞ exhibits the behavior
expected for the orthogonal symmetry class (see Ref. [4]
for a summary of the symmetry classification of disordered
Hamiltonians). However, because the polarization of
electromagnetic waves does not play exactly the same role
as the spin of electrons, no direct analogy can be drawn
between vector electromagnetic waves and the well-
studied case of disordered fermionic systems. In the system
described by Eq. (1), the propagation of elementary exci-
tations from one atom to another can be mediated not only
by the transverse electromagnetic waves but also by the
direct interaction of atomic dipole moments, which is
accounted for by the longitudinal component of the electro-
magnetic field [16]. The latter phenomenon becomes more
and more efficient as the typical distance between neighbor-
ing atoms decreases with increasing the number density of
atoms. The possible importance of resonant dipole-dipole
interactions in the context of Anderson localization was
pointed out by Sajeev John in the reply [35] to a comment
on his paper [32]. Later on, Nieuwenhuizen et al. developed
a perturbational approach to show that the dipole-dipole
interactions between atoms in a dilute cloud of two-level
atoms yield a small positive correction to the photon
diffusion coefficient D and, thus, compete with the weak
localization phenomenon that tends to decrease D [36].
However, being limited to low densities of atoms ρ=k30 ≪ 1,
this result does not allow one to draw any conclusions
concerning the fate of energy transport in the interesting
regime of high atomic densities. Our calculations go beyond
the perturbation theory of Ref. [36] and show that at high
densities ρ=k30 ≳ 1, the resonant dipole-dipole interactions
become sufficiently strong to overcome the suppression of
transport due to Anderson localization effects and thereby
prevent spatial localization of elementary excitations in the
system described by Eq. (1). The dipole-dipole interactions
are discarded in the scalar approximation (3) which explains
essential differences between vector and scalar models. It is
interesting to note that the vector character of a wave does
not suppress Anderson localization if it is not accompanied
by significant modifications of the near-field behavior. To
demonstrate this, we repeated the calculations presented
above for elastic waves, which in contrast to the electro-
magnetic case can also have a propagating longitudinal
component. The elastic Green’s function exhibits the same
1=rij divergence for rij → 0 as the scalar one (3), and our

calculations show clear signatures of Anderson localization
transition, similar to the scalar case [37].
At low densities ρ=k30 ≪ 1, the photon-mediated

transport dominates and the dimensionless conductance
of a disordered system of size R is g ∝ Ml=R, where M ∝
ðk0RÞ2 is the number of transport channels [16]. Assuming
l ¼ l0 and noticing that R ∝ ðN=ρÞ1=3, we obtain g ∝
ðk0l0Þ4=3 at a constant N. As can be seen in Fig. 3, this
scaling is indeed obeyed at k0l0 > 1 for both scalar and
vector models, confirming the transport of energy via the
multiple scattering of photons. At higher densities, corre-
sponding to k0l0 < 1, Anderson localization suppresses
transport in the scalar model, leading to very small values
of g, whereas the nonradiative transport channel takes over
in the vector model. As follows from the approximate
scaling g ∝ ðk0l0Þ1=3 observed in Fig. 3(b), the mean free
path l is essentially independent of density ρ in this regime.
Our discovery of the absence of Anderson localization of

light in a 3D random ensemble of point scatterers shows
that clouds of randomly distributed cold atoms—for which
the Hamiltonian of Eq. (1) applies provided that the dipole
approximation for light-matter interaction is acceptable—
are not suitable for observation of this phenomenon.
We demonstrated the importance of the vector character
of electromagnetic waves in the context of the Anderson
localization problem and elucidated the role of resonant
dipole-dipole interactions in multiple light scattering. In
addition, our results suggest that the simple point-scatterer
model might not be suitable for the description of multiple
light scattering in complex photonic media like, for
example, the media used in recent experiments [10–15].
However, the latter can be modeled by grouping many
point scattering centers in clusters representing large
dielectric particles, which in their turn can be distributed
in space randomly or with certain spatial correlations. The
role of order [38] and long- or short-range correlations [39]
in scatterer positions can also be studied in the framework
of the approach developed in this work.
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