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Limit-cycle oscillators are used to model a broad range of periodic nonlinear phenomena. Using the
optically injected semiconductor laser as a paradigmatic example, we demonstrate that at specific operating
points, the period-one oscillation frequency is simultaneously insensitive tomultiple perturbation sources. In
our system these include the temperature fluctuations experienced by the master and slave lasers as well as
fluctuations in the bias current applied to the slave laser. Tuning of the oscillation frequency then depends
only on the injected optical field amplitude. Experimental measurements are in detailed quantitative agree-
ment with numerical modeling. These special operating points should prove valuable for developing ultra-
stable nonlinear oscillators, such as a narrow-linewidth, frequency-tunable photonic microwave oscillator.
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Nonlinear dynamics in oscillators has been invoked
to explain a wide variety of physical phenomena over
disciplines ranging from neuroscience to geoscience [1].
Systems and devices exhibiting self-sustained oscillations,
described mathematically as a limit cycle, are fundamental
components in complex systems such as biological oscil-
lators and technological applications such as time or fre-
quency references; there is also considerable interest in
photonics implementations of these oscillators [2]. In all
of these instances, there is the need to understand the
influence of a noisy or perturbing environment on the
properties of the limit cycle. Perturbations in oscillatory
systems can be translated in frequency through the nonlin-
ear coupling among elements. For example, low-frequency
vibration or temperature perturbations can negatively
impact the stability of a high-frequency oscillator.
Here we demonstrate that nonlinear dynamics, which

usually degrades system performance, can counterintui-
tively be used to suppress the deleterious effects such
perturbations have on the system through a proper choice
of the operating point. This suppression results from inter-
ference between spectral components of the output signal
and is generated by the same generic nonlinear mechanism
that shifts low-frequency perturbations up to frequencies
near the intrinsic oscillation frequency. Therefore, such
operating points are likely to be present in many nonlinear
systems displaying periodic dynamics. We observe that the
operating points that achieve this self-canceling interfer-
ence occur where our system, the semiconductor laser sub-
ject to external optical injection, deviates most strongly

from the simplifying predictions that have been used in
its analysis and, therefore, this effect has remained unde-
tected despite the fact that this is a well-studied system.
Using an optically-injected semiconductor laser, we con-
firm that at certain operating points the fundamental reso-
nance frequency of the system, the so-called period-one
(P1) frequency, possess greatly reduced sensitivity to cur-
rent fluctuations in the slave laser and/or to perturbations in
the operating temperatures of either laser. This system
provides a concrete physical platform to investigate the role
of nonlinear dynamics in controlling sensitivity to external
perturbations, and should therefore provide an additional
avenue to be exploited in the creation of low phase-noise
sources e.g., tunable photonic oscillators.
Model systems for nonlinear dynamics, where detailed

quantitative comparisons between model and the real
physical system can be made, are particularly useful to
understand the complexities introduced by nonlinearities
in the actual system. The wide range of nonlinear dynamic
characteristics exhibited by the optically-injected semicon-
ductor laser have been quantitatively recovered using a
three-dimensional, lumped-element, detuned-oscillator
model [3–5]:

x
: ¼ zxþ ðbz − ωÞyþ ξ (1)

y
: ¼ zy − ðbz − ωÞx (2)

z
: ¼ κ − Az − Bð1þ 2zÞðx2 þ y2 − 1Þ: (3)

This is a generic system of three coupled elements: two,
(x, y), that describe the quadrature comonents of the circu-
lationg optical field, and a third, z, that represents the free
carriers of the gain medium [5]. The key nonlinearities in
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this system are the multiplicative ones in the quadrature
components of the field equations that all involve the z
variable. This type of nonlinearity is present in many
models, including paradigmatic ones such as the Lorenz
equations [1].
Figure 1 is a schematic of the configuration of an exter-

nally injected semiconductor laser. The output of a steady-
state single-mode master laser, at an optical frequency νi,
passes through an isolator and is injected into the oscillat-
ing mode of a second semiconductor laser (the so-called
slave laser), also steady-state and single mode, with a
free-running frequency ν0. A weak modulation current
can be added to either the master or slave laser for diagnos-
tic purposes. The slave laser under investigation is a fiber-
pigtailed DFB laser operating at a wavelength of 1557 nm
that has been extensively investigated previously [3]. The
different components are all fiber coupled with SMF-28
optical fiber. An amplified fast photodiode detects the
output and the power spectrum of the photodiode signal
is monitored using a electrical spectrum analyzer (ESA).
A third laser is sometimes used as a tunable local oscillator
to generate a heterodyne signal that effectively converts the
ESA into an optical spectrum analyzer [3].
When displaying a P1 dynamic, the optical spectrum

consists of dominant peaks at the injection frequency
and at one resonance frequency (f0) below, which is the
injection-perturbed oscillation frequency of the slave laser.
In addition, other weaker peaks at periodic offsets of the
P1 frequency are typically present. The addition of a
weak modulation current at a frequency fm ≪ f0 causes
sidebands to appear about these main optical peaks.
Figure 2 shows typical power spectra. The power spectrum
displays a single dominant peak at the P1 oscillation or pul-
sation frequency, along with sidebands and a peak at the
modulation frequency if a modulation current is present.
With no modulation current, only the dominant peak at
the P1 frequency appears in the power spectrum, and the
optical spectrum displays only the discrete set of peaks off-
set by this frequency.

For these experiments, the operating points of the master
and slave lasers are temperature tuned so the P1 frequency
is locally insensitive to the master-slave detuning; the P1
frequency is at a local minimum with respect to this control
parameter and, therefore, insensitive to temperature fluctu-
ations. A weak sinusoidal modulation current with fre-
quency fm ≪ f0 is then added to either the master or
slave laser. Typically, the P1 frequency peak develops side-
bands offset by integer multiples of fm regardless of which
laser the modulation current is added to. However, at
approximately the detuning that produces the minimum
P1 frequency we observe a minimum in the amplitude
of the modulation sidebands in the power spectrum when
the modulation current is added to the slave laser, as shown
in Fig. 2. By comparison, the peak at the modulation fre-
quency shows no such minimum, verifying that the linear
response of the laser is unchanged. If the modulation cur-
rent is added to the master laser, there is a less pronounced
modulation minimum, but it occurs at a detuning well offset
from the operating point where the P1 frequency is
minimized.
Figure 3 shows experimental measurements of the ampli-

tude of the sidebands and the P1 frequency as the detuning
frequency of the master laser is stepped through the P1 fre-
quency minimum. Here the amplitude of the P1 frequency
peak varies strongly as the detuning moves away from the
Hopf bifurcation. Therefore, the amplitudes of the side-
bands are shown normalized to the amplitude of the central
peak at each detuning. The error for the experimentally
measured detuning is �300 MHz while the depths of
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FIG. 1 (color online). Schematic of a semiconductor laser sub-
ject to external optical injection (doted green). The master laser is
isolated from feedback. In our experiment, the output from the
injected laser (solid red) is detected by a fast photodiode and
monitored using a microwave spectrum analyzer. A small-signal
modulation current is added to either the master or slave laser.
A tunable laser acting as a local oscillator (LO) can be added
to generate a high-resolution optical spectrum using a heterodyne
technique (dashed blue).

0 2 4 6 8 10

-70

-60

-50

-40

-30

-20

Frequency (GHz)

S
ig

na
l (

dB
m

)

FIG. 2 (color online). Power spectra of the laser output in the P1
oscillation regime with the addition of a weak modulation
current to the slave laser. The sidebands are minimized when
the master laser is detuned to generate a local minimum of the
P1 frequency (solid red, detuning ¼ −2.1 GHz), but are much
stronger for a shifted detuning frequency (dashed blue,
detuning ¼ −1.2 GHz). A normalized injection amplitude of
0.06 is used in both cases and the peak at the modulation fre-
quency (500 MHz) remains essentially unchanged.
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the minima were limited by the background noise levels.
The dips in the amplitudes of the sidebands are quite nar-
row with respect to the relaxation rates of the free-running
laser which are > 109 s−1 at this operating point [3,5].
Although a modulation frequency of 100 MHz was used
to generate or simulate the results shown in Fig. 3 varying
the modulation frequency up to 1 GHz produced similar
results (see [5]).
Figure 4 shows a mapping of key operating points of

the laser, comparing experimental measurements with
model calculations (described later), as functions of the
master laser detuning from the free-running slave optical
frequency and the amplitude of the injected signal. Themap-
ping is made by monitoring the power and optical spectra of
the optically injected laser. Saddle-node and Hopf bifurca-
tions bound the region of stable locking, with the Hopf
bifurcation leading to P1 limit-cycle oscillation. More com-
plex dynamics occur in the region between the points labeled
as either the saddle-node bifurcation of limit cycles or alter-
nateroutes tochaos(throughperioddoublingorotherroutes).
One cannot identify the saddle-node bifurcation of limit
cycles through the spectra, but previous work using bifurca-
tion analysis has done so [4]. Along the other boundary,
period-doubling routes to chaos have been identified [3].
Toproduce thequantitative comparisonsbetweendata and

theory we modeled the optically-injected laser using a set of
coupled equations, of the form of Eqs. (1)–(3), for the circu-
lating field amplitude of the oscillating laser mode and the
carrierdensityof thegainmedium[3,6].Thismodelmodifies
Eqs. (1)–(3) by adding the effects of gain saturation to both
the real (refractive index) and imaginary (gain) parts of the
nonlinear susceptibility [3]. The numerical simulations used

a Runge–Kutta integration procedure over durations> 1 μs
to generate time series that were subsequently Fourier
transformed to produce spectra [6].
The results of the numerical calculations are shown in

Figs. 3 and 4 using parameters that have been determined
experimentally for the laser under investigation [5]. The
model fully reproduces the bifurcation boundaries of the
P1 region, the local minimum in the P1 frequency, and
the simultaneous dip in the amplitude of the sidebands
as the detuning between master and slave lasers is changed.
The positions of the P1 frequency minimum and the ampli-
tude dip are sensitive to the effects of gain saturation; to
obtain good agreement between experimentally measured
data and the model saturation effects were included.
More details on the comparison of the model and experi-
mental data, particularly optical spectra, will be given in a
later publication. Here, we note that the basic observation
of simultaneous insensitivity to perturbations in the detun-
ing between master and slave and to perturbations in the
slave laser current remained when gain saturation effects
were removed, confirming that this term in the model is
not necessary to generate the underlying interaction, only
to achieve quantitative agreement between our numerical
model and experiment.
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FIG. 3 (color online). Experimentally measured (symbols) and
calculated (solid curves) values of the modulation sideband am-
plitude and the P1 frequency using a normalized injection ampli-
tude of 0.06, a bias current of 3× threshold, and a modulation
frequency of 100 MHz. This figure shows the positive frequency
detuning sideband (red circles), the negative detuning sideband
(green diamonds), and the corresponding P1 frequency (blue
squares).

FIG. 4 (color online). Mapping of key transitions of the injected
laser as a function of the detuning frequency and amplitude of the
master. Experimental Data—the open squares are the saddle-node
bifurcation points that, along with the green triangles representing
Hopf Bifurcation points, bound the region of stable locking, the
red diamonds mark operating points with a local P1 minimum
frequency. The pink circles denote a saddle-node bifurcation
of limit cycles, either from P1 to more complex dynamics or
between two P1 frequencies, and the purple diamonds, alternate
routes from P1 to more complex dynamics. Calculated Data— the
light blue regions mark P1, and the dark blue regions P2, periodic
dynamics with lines of constant frequency are labeled in GHz.
The white region denotes stable operation, while the black
represents complex dynamics. The black squares denote the
calculated positions of the local P1 minima to be compared with
the red diamonds.
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It is important to remember that the sidebands in the
power spectrum are the sum of terms due to the mixing
of the sidebands in the optical spectrum with adjacent cen-
tral peaks. By comparing the power spectra with optical
spectra generated simultaneously using the hetrodyne tech-
nique, we verified that the sharp minima in the sidebands
(see Fig. 3) result primarily from the interference of the
multiple wave-mixing contributions, not the simultaneous
reduction in the amplitude of the sidebands of each optical
peak. The component at the modulation frequency, which
results from the sum of the mixing of each optical sideband
with its respective central peak, remains essentially con-
stant as the injection detuning frequency is changed.
While the effects of current noise on the P1 frequency are

suppressed, spontaneous emission noise still plays a role.
One can see this in the model by considering spontaneous
emission as a fluctuating source term with contributions to
both the optical-field and carrier-density equations [7]. The
carrier-equation contribution is eliminated through the
interference of wave-mixing terms described above, as if
it were an injection current modulation source, while the
field-equation contribution, which acts like a stochastic
external optical injection term, still contributes. However,
only the amplitude fluctuations, not the phase or frequency
fluctuations, contribute, leading to the Lorentzian line
shape of the spectral features in Fig. 2. Previously, it
was shown how the coupling of optical fields and free car-
riers in a semiconductor laser could lead to reduced power
fluctuations [7]. In the optically injected laser, the nonlinear
dynamics can completely flip the sensitivity, so that it is the
frequency fluctuations that are minimized.
The curve of measured and modeled operating points in

Fig. 4 where the P1 frequency is minimized is initiated
along a saddle-node bifurcation of limit cycles. In fact,
at the end of the bifurcation the transition is between
two limit cycles of different frequency. The laser switches
from a limit cycle where the injected-shifted laser oscilla-
tion frequency is pushed away from the injection frequency
at larger detuning to a limit cycle where the oscillation
frequency is pulled towards the injection frequency for
smaller detuning. This change in relative behavior of the
system resonance relative to the injection frequency is nec-
essary, though at higher injection levels we observe a
smooth rather than abrupt transition. Further, we observe
that the minimum P1 frequency merges with the bifurcation
line as the difference between the two frequencies goes to
zero. Frequency pushing behavior arises from the fact that
the semiconductor laser is a detuned oscillator, while the
frequency pulling behavior is the kind expected from
an Adler-type analysis of an injected oscillator [8,9]. At
low injection levels, the saddle node of limit cycle bifurca-
tion starts at a P1 frequency and master laser frequency off-
set approximately equal to the characteristic relaxation
resonance frequency of the free-running laser, separating
the frequency-pushing and -pulling regimes. At higher

injection levels, where the sensitivity to perturbations is
reduced, the local minimum of the P1 frequency is also
a signature of a localized region of relative frequency pull-
ing, or reduced absolute frequency pushing, of the injec-
tion-perturbed laser oscillation frequency.
At the high-injection level end of the operating points,

where the P1 frequency is minimized, the Hopf bifurcation
is crossed at approximately the position where it deviates
most strongly from the line ω ¼ ξ that the bifurcation
asymptotically approaches with increasing injection [10].
Therefore, we observe that the region of reduced sensitivity
operation is bounded within a range where the attractor
characteristics are different (frequency-pulling) from the
P1 characteristics at larger detuning and away from the
regions of complex dynamics and the saddle-node bifurca-
tion of limit cycles (frequency pushing). Analysis of the P1
dynamics in terms of a solution with two dominant optical
frequency components [11] cannot yield the localized min-
ima of the P1 frequency with changes in the detuning.
Similarly, a linearized analysis of the laser under stable
injection locking [10] cannot yield such minima in this
region, though they appear under the full nonlinear analysis
[12]. Therefore, the P1 region and even the stable locking
region can have attractors that yield dynamical features
unexpected from perturbation solutions. Nonetheless, the
full nonlinear model, Eqs. (1)–(3), recovers these features
qualitatively and semiquantitatively, with a proper account-
ing of the saturation-induced gain and refractive index
changes being necessary to quantitatively recover them
in the optically-injected semiconductor laser.
In summary, we have presented experimental measure-

ments and numerical calculations based on the coupled opti-
cal-field or carrier-density model of the optically injected
semiconductor laser that show the existence of specific oper-
ating points with reduced sensitivity to systematic fluctua-
tions. These techniques complement and expand upon the
recent use of specifically engineered nonlinear oscillators
that used nonlinear dynamics to suppress oscillator phase
noise [13,14]. Further, the excellent agreement between
model and experiment in this system makes it an ideal test
configuration for investigating novel responses of a nonlin-
ear system to external stimulus. More generally, the work
highlights the nontrivial changes in the response of a nonlin-
ear system to perturbations, and the fact that at specific oper-
atingpointsnonlinearly shiftedperturbationsare suppressed,
while otherwise appearing to remain similar in characteris-
tics to nearby operating points. This has technological rel-
evance to the frequency reference application cited earlier,
but we believe that such localized operating points may also
be of importance to a wide range of nonlinear systems.
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