
Generalized Dicke Nonequilibrium Dynamics in Trapped Ions

Sam Genway,1 Weibin Li,1 Cenap Ates,1 Benjamin P. Lanyon,2,3 and Igor Lesanovsky1
1School of Physics and Astronomy, The University of Nottingham, Nottingham NG7 2RD, United Kingdom

2Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften,
Technikerstr. 21A, 6020 Innsbruck, Austria

3Institut für Experimentalphysik, Universität Innsbruck,Technikerstr. 25, 6020 Innsbruck, Austria
(Received 6 August 2013; published 15 January 2014)

We explore trapped ions as a setting to investigate nonequilibrium phases in a generalized Dicke model
of dissipative spins coupled to phonon modes. We find a rich dynamical phase diagram including super-
radiantlike regimes, dynamical phase coexistence, and phonon-lasing behavior. A particular advantage of
trapped ions is that these phases and transitions among them can be probed in situ through fluorescence. We
demonstrate that the main physical insights are captured by a minimal model and consider an experimental
realization with Caþ ions trapped in a linear Paul trap with a dressing scheme to create effective two-level
systems with a tunable dissipation rate.
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The exploration and the understanding of the equilibrium
and in particular the nonequilibrium behavior [1–6] of
quantum many-body systems is of great current interest.
Due to recent experimental advances trapped ions have
become a very flexible platform to approach this challeng-
ing problem [7–9]. In particular, spin systems [10,11] have
been investigated with both a few [12] and several hundred
ions [13,14] and a variety of phenomena such as the emer-
gence of interesting quantum phases [8,10,15,16], the
dynamical formation of defects [17,18], and the role of
frustration [19,20] have been explored. This flexibility is
rooted in the fact that the coherent coupling between elec-
tronic states (forming effective spin degrees of freedom)
and the vibrations of an ion crystal can be precisely
controlled.
Such coupling between spins and oscillator degrees of

freedom in general leads to intriguing many-body effects.
A paradigmatic example is seen in the Dicke model (DM)
[21], originally proposed to study superradiance in quan-
tum electrodynamics [22–24]. The DM features a continu-
ous quantum phase transition (QPT) at critical coupling
between the spins and oscillator degrees of freedom. The
QPT connects a “normal” phase, where the oscillator is
in its ground state, to a “superradiant” phase with a dis-
placed oscillator. Due to the coupling of the oscillator to
the spins, this QPT becomes equally manifest in the
polarization of the spins. Dicke physics gives insights into
a variety of phenomena such as quantum chaos [25] and
the physics of spin glasses [26]. This versatility has ush-
ered renewed interest in exploring both statics and dynam-
ics [27–30]. In particular much effort is currently put into
experimentally realizing Dicke systems out of equilibrium
—a recent example is the investigation of the nonequili-
brium dynamics of superfluid cold atomic gases in optical
cavities [31,32].

In this work we show that a generalized version of the
DM— where dissipation is introduced on the individual
spins— captures the nonequilibrium physics of a crystal
of laser-driven trapped ions. Analogous to the QPT in

FIG. 1: (color online). (a) Schematic diagram of a one-
dimensional ion crystal in different dynamical phases. Shown
are two electronic states of each ion representing states j↓i
and j↑i of a fictitious spin. Transitions between electronic (spin)
states are driven by a laser with Rabi frequency Ω and detuning
Δ. The state j↑i relaxes to j↓i at a spontaneous decay rate γ. Pho-
tons emitted in this process are detected with spatial and temporal
resolution. Electronic states couple to motional degrees of free-
dom through a far-detuned standing-wave laser field. Upon in-
creasing this coupling there is a dynamical phase transition
where the ions become displaced in the trap (dashed circles).
The displacement leads to a large effective detuning Δ0 such that
the electronic state j↑i is rarely populated and the fluorescence
signal is greatly reduced. (b) Regions in parameter space where
both dynamical phases coexist are revealed by an intermittent
fluorescence signal. The data shown correspond to a QJMC tra-
jectory of five ions and display the times and positions of photon
emissions (top) and the spin z-polarization Jz (bottom).

PRL 112, 023603 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

17 JANUARY 2014

0031-9007=14=112(2)=023603(5) 023603-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.023603
http://dx.doi.org/10.1103/PhysRevLett.112.023603
http://dx.doi.org/10.1103/PhysRevLett.112.023603
http://dx.doi.org/10.1103/PhysRevLett.112.023603


the closed-system DM, we identify dynamical phase tran-
sitions (DPTs) associated with singular changes in steady
states of the system in the thermodynamic limit. The
dynamical phases of this system and the associated
DPTs are directly linked to the time-resolved fluorescence
signal from photon emissions of the ions [5]. This allows
for the in situ probing of collective dynamics resulting from
a competition between the coupling of spins to vibrational
degrees of freedom (phonons in the ion trap) [33,34] and
tuneable spin dissipation [see Fig. 1(a)]. The dynamical
phase diagram of the generalized DM includes nonequili-
brium steady states related to the traditional normal and
superradiant phases as well as a phase coexistence region.
These phases become manifest in time-resolved fluores-
cence measurements as bright and dark regions, with phase
coexistence resulting in temporal intermittency, as illus-
trated in Fig. 1(b). In contrast with the QPT of the conven-
tional DM, the DPT of the generalized DM is first order
and the phase diagram includes a new phase where phonon
lasing occurs.
In order to obtain a basic understanding of the physics of

the driven trapped ion system, we begin by studying a min-
imal model of N ions coupled to only a single phonon
mode. Later, we generalize this to the situation found in
an ion crystal formed by Caþ with many modes. The min-
imal model is described by the Hamiltonian

H ¼ Ω
XN

i¼1

Sxi þ Δ
XN

i¼1

Szi þ V
XN

i¼1

Szi ðaþ a†Þ þ ωa†a:

(1)

Here, Sxi , S
z
i are spin operators for the internal states of the

ion at position i in the trap [as in Fig. 1(a)]. a (a†) is the
bosonic annihilation (creation) operator for the axial center-
of-mass phonon mode, with frequency ω, such that a non-
zero haþ a†i corresponds to a displacement of all ions
along the trap. The ions are driven with Rabi frequency
Ω and detuning Δ. An electronic-state-dependent force
of strength V can be constructed [34,35] with a far-detuned
standing-wave laser field with the ions positioned at nodes.
At Δ ¼ 0, Eq. (1) is the DM Hamiltonian, with a continu-
ous QPT associated with a discrete symmetry breaking
when NV2 ¼ Ωω. Without dissipation, finite Δ smoothes
the QPT into a crossover [36].
The effective decay of the spins [see Fig. 1(a)] with rate

γ is captured by the dissipator DðρÞ ¼ γ
P

iðS−i ρSþi −
ð1=2ÞfSþi S−i ; ρgÞ. The evolution of the densitymatrix is thus
governed by ρ

: ¼ WðρÞ ¼ −i½H; ρ� þDðρÞ: In the follow-
ing, we consider the case of trapping frequency ω ¼ NΩ,
as this scaling renders the phase boundaries N independent.
We employ a mean-field (MF) approach to study semiclass-
ical dynamics and complement this with quantum-jump
MonteCarlo (QJMC) simulations [37],which illustratewhat
would be seen in experiment.

We find MF equations for the expectation values
A ¼ hai and the macroscopic spin polarization
Jk ¼ hð1=NÞPiS

k
i i, for k ¼ x, y, z:

A
:
¼ −iωA − iVJzN;

Jx
: ¼ −

γ

2
Jx − VJyðAþ A�Þ − ΔJy;

Jy
: ¼ −

γ

2
Jy −ΩJz þ VJxðAþ A�Þ þ ΔJx;

Jz
: ¼ −γ

�
Jz þ

1

2

�
þ ΩJy: (2)

Although information about fluctuations has been lost by
replacing expectation values of products of the form
hð1=NÞPiS

k
i ai by products of expectation values JkA, the

equations still capture approximate average dynamics.
These equations reveal two main differences from the tradi-
tional DM [25] and the DM with dissipation only in the
oscillator degrees of freedom [28]. First, the length of the
macroscopic spin J2 is not conserved so that fixed points
[38] traditionally associated with normal (zero oscillator
displacement) and superradiant (large oscillator displace-
ment)phasesaredifferent innature.Second, there is no spon-
taneous symmetry breaking between states with opposite
Jz and oscillator displacement X ¼ ðAþ A�Þ=2 as the dis-
sipation acting on the individual spins always selects the
macroscopic spin-down state over a state with positive Jz.
Our aim is to identify steady states of the quantum prob-

lem with the stable fixed points of the MF equations (2).
Figure 2(a) shows the dynamical phase diagram found
from these fixed points for Δ ¼ 0 as a function of V
and γ. The insets show examples of time- and space-
resolved fluorescence measurements for five ions obtained
by QJMC simulations of the full model. The fluorescence
signals are clearly linked to the various phases. In particu-
lar, we see a “bright phase” (B) corresponding to the state
with vanishing oscillator displacement X and a “dark
phase” (D) when X > 0. In the bright phase, the effects
of driving and dissipation dominate and, in our MF analy-
sis, the stable fixed point lies far within the Bloch sphere. In
the dark phase, the coupling of spins to the phonon mode
leads to an oscillator displacement a large effective detun-
ing [see Fig. 1(a)], given by Δ0 ¼ Δþ 2VX in the MF
analysis. This suppresses the driving and dissipation lead-
ing to a large spin polarization.
In the limit γ → 0þ we find a simple expression for the

critical coupling Vc, above which theD fixed point is stable
in the thermodynamic limit: Vc ¼ ð21=2Ωω=NÞ1=2, for gen-
eral trapping frequency ω. This value differs from the non-
dissipative DM as does the nature of the transition itself. It
is first order and associated with a region of phase coexist-
ence (BþD), which occurs at finite γ ≲ 0.5Ω, beyond Vc.
In the fluorescence records this phase coexistence shows up
as a pronounced intermittency characterised by a switching
between bright and dark periods. The effect is strongly
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dependent on system size, with the existence of longer
bright and dark periods at larger N (see the
Supplemental Material [39]). While the steady states are
classical in nature, the noise which causes switching is
of quantum origin as it arises from the spin dissipation.
When crossing the DPT, there is a sharp change in Jz
and the displacement of the ions in the trap, associated with
the emergence of a new stable fixed point of theMF equations
[see Fig. 2(b)]. So we see that a structural transition in the ion
positions is associated with a DPT in the fluorescence in the
thermodynamic limit [5]. At large γ ∼Ω, as shown in Fig. 2
(c), the DPT becomes a crossover where the fixed point
moves continuously from bright to dark phases with increas-
ing V. We note that intermittency in fluorescence signals is
not seen in this crossover region.
Surprisingly, in contrast with the closed-system DM

QPT [36], a finite detuning Δ does not destroy the
DPTs shown in Fig. 3. For small Δ > 0, MF steady states
remain qualitatively unchanged and quantitatively very
similar. One might imagine that a negative detuning would
compete with spin dissipation to take the system towards a

steady state with a large and positive Jz at large V, as in the
closed system. However, as shown in Fig. 3, for Δ < 0 we
find that the fixed points at small γ and V actually become
unstable at Hopf bifurcations [38] and, in these regimes,
limit-cycle oscillations in the phonon dynamics are found
at long times. This phenomenon has been observed in
trapped ions and is known as phonon lasing [40]. These
regions, labeled PL, are shown in Fig. 3, where we also
plot two example semiclassical trajectories towards the
dark fixed point and the limit cycle. While it appears
unphysical that limit cycles persist down to V ¼ 0, this fea-
ture is destroyed by any finite phonon dissipation. Such dis-
sipation inevitably occurs in trapped-ion experiments. We
introduce a finite dissipation rate κ=N ≪ γ on the motional
degrees of freedom by replacing ω → ω − iκ in the MF
equations (2). This changes all dynamical phase boundaries
negligibly except for the phonon lasing regime, which
becomes suppressed at small V with finite κ (see Fig. 3).
So far we have only included the center-of-mass phonon

mode in our considerations. In a trapped-ion crystal, an
electronic-state-dependent force on the ions constructed
with a far-detuned standing-wave laser field will couple
the electronic states to all phonon modes. We explore
the role of the higher-frequency modes by extending the
simple model (1). The phonon modes have frequencies
ωm, for m ¼ 1 to N, and couple to the spins via the cou-
pling Hamiltonian

P
imVimS

z
i ðam þ a†mÞ. Here a†m is the

creation operator for mode m. The coupling matrix

FIG. 2: (color online). Dynamical phase diagram for Δ ¼ 0.
(a) The MF phase diagram found from the fixed-point analysis
of Eqs. (2) as a function of the coupling V and inverse lifetime
γ for ω=N ¼ Ω. Shown are the bright (B) and dark (D) regimes
and a region of phase coexistence (BþD). The phases are dis-
tinguished by both spin-polarization and ion-displacement order
parameters. Inset: QJMC simulations for a five-ion system at
parameter values V, γ as indicated. Shown are quantum trajecto-
ries in the steady state, with markers indicating the times at which
photon emissions occur for each of the five ions along the ordi-
nate axes. (b,c) Plots of the polarization Jz and phonon displace-
ment X ¼ ðAþ A�Þ=2 at fixed points as a function of V=Ω for
γ=Ω ¼ 0.15 (b) and γ=Ω ¼ 0.6 (c). Solid lines indicate stable
fixed points.

FIG. 3: (color online). Dynamical phase diagram for Δ ¼
−0.01 Ω with all other parameters as in Fig. 2. In addition to the
bright (B), dark (D), and coexistence (BþD) regimes, points
where the bright fixed point disappears at a Hopf bifurcation are
shown for κ ¼ 0 (solid blue line) and κ=N ¼ 10−4 Ω (dashed blue
line).Beyond thesebirfurcations, limit-cycle solutionscorrespond-
ing to phonon lasing (PL) exist. Beyond the critical coupling there
existsanewregion(PLþD)where thedark fixedpoint is stablebut
the bright fixed point bifurcates. The parameters indicated by “þ”
are used for the insets. Shown inset are plots of the MF dynamics
with different initial conditions showing the Bloch sphere and os-
cillator phase plane for limit-cycle (red) and fixed-point (green)
steady states. The dark fixed point is labeled “×.”
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elements Vim are proportional to the normal-mode dis-
placement vectors of the ions [33], so that all vibrational
modes with frequencies above ω1 ¼ ω have a hetero-
geneous phonon-spin coupling. Thus, different spins and
phonon modes have different MF equations and Eqs. (2)
are replaced with 4N equations.
To be specific, let us study in detail the case of a three-

ion system and analyze the fixed points of the 12 coupled
equations associated with this three-spin, three-oscillator
model (see the Supplemental Material [39]). We find the
stable fixed points in the single-mode model (2) are also
stable fixed points of many-mode dynamics (see the
Supplemental Material [39]). In addition to these steady
states, in the coexistence region we find a family of addi-
tional fixed points, which we illustrate in Fig. 4(a). None of
these additional steady states exists at large V ≳ 2.3Ω. In
Figs. 4(b)–4(d) we confirm these inferences by performing
QJMC simulations for three trapped ions, including both
the center-of-mass mode and, additionally, the next mode
with frequency ω2. Although the additional phonon mode
we include becomes populated close to the DPT, we still
observe temporal intermittency in the photon emission rate,
associated with a switching between states with different
Jz. Crucially, far into the bright and dark regimes, our pre-
diction that higher-frequency modes will not play a role is
confirmed with QJMC simulations.
We now check that the ion recoil due to the fluorescence,

which allows us to probe dynamical phases, does not itself

significantly change the dynamics. When ion recoil is
included in the model, the full Liouvillian for the sponta-
neous emission process couples the spatial and internal ion
degrees of freedom. For a single phonon mode, the
Lindblad operators LiðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γWðxÞp

eiηðaþa†ÞxS−i form a
continuum with −1 ≤ x ≤ 1. WðxÞ ¼ 3=4ð1þ x2Þ reflects
the angular distribution for a dipole transition and η is the
Lamb-Dicke parameter [41]. Repeating our fluorescence-
signal simulations in Fig. 2 with the full Liouvillian asso-
ciated with spontaneous emission we find the collective
quantum-jump behavior qualitatively the same with
η ¼ 1=10. In this Lamb-Dicke regime, if we expand the
Liouvillian up to second order in η as in Ref. [41], the semi-
classical Eqs. (2) are unchanged.
Finally, let us show how to control the decay rate γ which

is essential for mapping out the phase diagram. This can be
tuned in a Caþ-ion crystal using a simple dressing scheme
[42]. Effective two-level systems (TLSs) can be created
from the ions’ j4S1=2i, j4P3=2i, and j3D5=2i states (see
Fig. 5). We employ a strong dressing laser, with Rabi fre-
quency ΩD and detuning ΔD, between the j3D5=2i and
j4P3=2i states. Projecting out the fast dynamics associated
with the state j4P3=2i using the method of adiabatic elimi-
nation [43], we find effective driven and dissipative TLSs
with an effective dissipation rate γ, which can be adjusted
by tuning ΩD. The effective detuning Δ can be removed
completely by an appropriate detuning δ of the driving
laser with Rabi frequency Ω. We find effective TLS
parameters γ ¼ ½ðΓ1 þ Γ2ÞΩ2

D�=½ðΓ1 þ Γ2Þ2 þ 4Δ2
D� and

Δ ¼ δ − ΔDγ=½ðΓ1 þ Γ2Þ�. For Caþ, Γ−1
1 ¼ 7.4 × 10−9 s

and Γ−1
2 ¼ 101 × 10−9 s so that for ΩD ¼ 10 MHz and

ΔD ¼ 300 MHz with Ω ¼ 0.2 MHz and δ ¼ 79 kHz we
have an effective TLS with γ=Ω≃ 0.19 and Δ≃ 0. The
system reaches an effective TLS steady state on short time
scales≲150 μs. Therefore, the dynamical phases discussed
in this work are observable on experimental time scales,
even though the fluorescence rates are significantly lower
than when driving on a dipole-allowed transition [44,45].
The full counting statistics for the fluorescence can be
inferred from repeated experiments.

FIG. 4: (color online). (a) Oscillator displacements at the fixed
points of the three-spin, three-oscillator model as a function of the
coupling V, for γ ¼ 0.1 and κ ¼ Δ ¼ 0. Regions where the fixed
points are stable are shown with solid lines with all other fixed-
point classifications plotted with dashed lines. Plotted are the
center-of-mass mode with frequency ω1 (blue), and the modes
(see the Supplemental Material [39]) with frequencies ω2 (green)
and ω3 (red). (b,c,d) Sample trajectories with phonon modes
m ¼ 1 and 2 included showing the occupation of the two in-
cluded phonon modes (top), the polarization Jz (middle),
and photon emissions (bottom) of a three-ion simulation for
V ¼ 0.1 (b), V ¼ 1.5 (c), and V ¼ 3.5 (d).

FIG. 5: (a) Level structure of Caþ ions driven by dressing
laser of Rabi frequency ΩD with detuning ΔD, with decay
rates Γ1 and Γ2 shown. The driven transition has
Ω; δ ≪ ΩD ≪ ΔD;Γ1;Γ2. (b) The effective two-level scheme after
projecting out the fast degrees of freedom, with unmodified Rabi
frequencyΩ, effectivedetuninganddecayrateΔ, andγ.Thescheme
provides the states j↓i and j↑i which derive from j4S1=2i and
j3D5=3i dressed with j4P3=2i.
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