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We explain the physical role of nonperturbative saddle points of path integrals in theories without
instantons, using the example of the asymptotically free two-dimensional principal chiral model (PCM).
Standard topological arguments based on homotopy considerations suggest no role for nonperturbative
saddles in such theories. However, the resurgence theory, which unifies perturbative and nonperturbative
physics, predicts the existence of several types of nonperturbative saddles associated with features of the
large-order structure of the perturbation theory. These points are illustrated in the PCM, where we find new
nonperturbative “fracton” saddle point field configurations, and suggest a quantum interpretation of
previously discovered “uniton” unstable classical solutions. The fractons lead to a semiclassical realization
of IR renormalons in the circle-compactified theory and yield the microscopic mechanism of the mass gap
of the PCM.
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In general, observables in quantum field theories (QFTs)
receive perturbative and nonperturbative contributions. The
perturbative contributions summarize information about
quantum fluctuations around the trivial perturbative saddle
point (vacuum) of the path integral, while the nonpertur-
bative contributions come from quantum fluctuations
around the nontrivial nonperturbative (NP) saddle points.
In this Letter, we develop a deeper understanding of what
the structure of perturbation theory implies for the nature
and existence of NP saddle points of path integrals.
We illustrate these ideas with the two-dimensional (2D)

SUðNÞ principal chiral model (PCM). The PCM is an
asymptotically free matrix field theory and is believed to
have a dynamically generated mass gap determined by the
strong scale Λ ¼ μe−½4π=g2ðμÞN�, with μ the renormalization
scale; see, e.g., [1–3]. The PCM models many features of
4DYang-Mills (YM) theory, but historically it has received
less attention [4] than its vector-model cousin, the CPN−1
model, because (i) since π2½SUðNÞ� ¼ 0, there are no
topologically stable instanton configurations which may
lead to NP factors such as e−t=g2 , and (ii) its large-N limit is
not analytically tractable [5]. The CPN−1 model has neither
of these issues, but (i) is also shared with many other 2D
QFTs, such as OðN > 3Þ and SpðNÞ models, which are
relevant to condensed matter physics [6].
However, the divergent structure of the perturbative

series in the PCM is very similar to YM or CPN−1.
After regularization and renormalization, the perturbative
series has at least two types of factorial divergences. One is
due to the combinatorics of the Feynman diagrams, while
the other is known as the IR and UV renormalon divergence
[2,7] and comes from the low and high momenta in phase

space integrals. Resummation of the perturbative series
using the standard technique of Borel summation leads to
singularities in the Borel plane. IR renormalons render the
Borel sum ambiguous and ill defined, because there is a
subset of factorially divergent terms that do not alternate in
sign. These problems are ubiquitous in asymptotically free
QFTs, including YM and QCD (see, e.g., [8]) as well as in
string theory and matrix models [9].
It is generally believed that in quantum mechanics (QM)

and QFT, the ambiguities in the summation of perturbative
series due to the growth in the number of Feynman
diagrams cancel against ambiguities in the contributions
from NP instanton–anti-instanton saddle points, ½IĪ �, an ∼
n!=ðS½IĪ �Þn [7]. On the other hand, the semiclassical
meaning of IR renormalons has been unclear until recently,
when it was shown that renormalons may also be con-
tinuously connected to new semiclassical NP saddle points
[10,11]. In the weak coupling regime of circle-compactified
deformed YM and QCD(adj) in 4D, and the CPN−1 model
in 2D, it was shown that Belavin-Polyakov-Schwarz-
Tyupkin instantons fractionalize into N monopole instan-
tons Mi [12,13] and N kink instantons Ki [14,15],
respectively. Correlated ½KiK̄i� and ½MiM̄i� events control
the IR renormalon singularities in these theories and render
physical observables unambiguous through the mechanism
of resurgence [10,11,16].
However, the PCM has neither instantons nor fractional

instantons [17]. In fact, the PCM has no known stable NP
saddles which could lead to NP factors such as e−t=g2 . This
produces a deep puzzle. Since the perturbative series is
divergent and non-Borel summable, an attempt to do Borel
resummation results in ambiguities of the form�ie−ti=g2 . If
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the theory is to be semiclassically meaningful and well
defined according to the criterion of Refs. [10,11], such NP
ambiguities must cancel; i.e., there must exist NP saddles
whose amplitude is proportional to �ie−ti=g2 . This is a
highly nontrivial prediction of the resurgence theory
applied to QFT. But, since there are no instantons, what
are these NP saddles?
Thus the perturbative similarity (in particular, the non-

Borel summability due to IR renormalons) between the
PCM and other asymptotically free theories such as YM
and CPN−1 appears to be in conflict with their NP differ-
ence: YM and CPN−1 have nontrivial homotopy groups
and hence have instantons, while the PCM has trivial
homotopy, π2½SUðNÞ� ¼ 0, and no stable instantons. This
suggests that naive topological considerations based solely
on homotopy are insufficient to fully characterize NP
saddles and miss a large class of important NP saddle
points. Some early hints that nontopological field configu-
rations may make important contributions in 2D field
theories appeared in, e.g., Refs. [18,19], but an explicit
identification of such configurations was not achieved at
that time. In this work, we combine the resurgence theory
with a physical principle of continuity and show
the existence of new NP saddles in the path integral of
the PCM, which we refer to as ”fractons” following the
important early work in Ref. [20]. Our analysis easily
generalizes to other theories, such as OðN > 3Þ or SpðNÞ
models, which also have no instantons.
Unitons.—The PCM has classical action

Sb ¼
N
2λ

Z
M
d2x tr∂μU∂μU†; U ∈ SUðNÞ; (1)

where λ ¼ g2N is a dimensionless coupling constant
and we work in Euclidean space with M ¼ R2 and
R × S1. The PCM has the symmetry SUðNÞL × SUðNÞR
actingasU → gLUg†R.Thereareno instantons,but thereexist
”unitons,” finite-action solutions to the second-order
Euclidean equations of motion, discovered in the seminal
work of Uhlenbeck [21]. Further properties are discussed
in Ref. [22]. These uniton solutions, which are harmonic
maps from S2 into SUðNÞ, did not receive much attention
in theQFT literature,mainlybecause theyare unstable; small
fluctuations lead to a decrease in the action [23].
Topologically, this instability is expected, since instantons
would be smooth maps from compactified base spaceM ¼
R2∪∞ ¼ S2 to the targetspaceT ¼ SUðNÞandclassifiedby
thesecondhomotopygroupπ2½SUðNÞ�.Butπ2½SUðNÞ� ¼ 0,
so there are no topologically stable instantons.
However, the notion that all finite action saddles con-

tributing to path integrals of, e.g., 2D sigma models are
classified by π2½T � is incorrect, even if π2½T � is nontrivial,
as pointed out in Ref. [15] for the CPN−1 model, which has
exact finite action non-Bogomolny-Prasad-Sommerfield
(BPS) solutions, and where the connection to resurgence

was also emphasized. One way to think about such
solutions is to observe that in the path integral the relevant
quantity is the topology of the infinite-dimensional space of
field configurations πn½Maps∶ S2 → T � ¼ πnþ2½T �, and
not just the number of disconnected components of
Maps∶ S2 → T counted by πdðT Þ [24]. From this per-
spective, unitons are associated to π3½SUðNÞ�. In fact, the
issue with focusing only on π2½T � can already be seen in
QM. Consider an instanton in QM with a periodic potential
and coupling g, where instantons are classified by their
winding number W ∈ π1ðS1Þ ¼ Z, and the basic instanton
solution hasW ¼ 1. This is a solution to the first-order BPS
equation and possesses an exact zero mode, its position.
The amplitude for this event is I ∼ e−SIþiΘ, where Θ is the
topological Θ angle [6]. Now, consider a correlated
instanton–anti-instanton event ½IĪ �. This is homotopically
indistinguishable from the perturbative vacuum, since
W ¼ 1þ ð−1Þ ¼ 0, but its action is S ¼ 1þ 1 ¼ 2, in
units of the instanton action. Yet the separation between the
two instantons is a negative quasizero mode, and the action
of this saddle decreases with decreasing separation. To
write the two-event amplitude, one must integrate over the
quasizero mode. Naively, when argðg2Þ ¼ 0 this integration
is dominated by short distances and is ill defined. However,
doing the quasizero mode integration at argðg2Þ ¼ 0�, we
find ½IĪ �� ∼ ðlog ð1=g2Þ − γ � iπÞe−2SI , a twofold
ambiguous result. This is a manifestation of the fact that
θ ¼ argðg2Þ ¼ 0 is a Stokes line. The resurgence theory
explains that the purely imaginary ambiguous part of the
nonperturbative amplitude cures the ambiguity associated
with the non-Borel summability of the perturbative series,
i.e., ImðB0;θ¼0� þ ½IĪ ��B2;θ¼0�Þ ¼ 0, where B0;θ¼0� and
B2;θ¼0� are left or right Borel sums of the formal perturba-
tive series describing quantum fluctuations around the
perturbative and nonperturbative ½IĪ �� saddle points of
the path integral, respectively [25]. For a fuller discussion
of this cancellation mechanism, see [11]. Thus, the “insta-
bility” of the ½IĪ � saddle point, i.e., a negative mode in the
fluctuation operator, is in fact a positive feature, not a
deficiency. Without it, the theory would be ill defined.
Unitons, as finite action non-BPS field configurations

(just like ½IĪ � events), must be summed over in a semi-
classical analysis of the path integral. The uniton action is
quantized in units of SU ≡ 8π=g2 [22]. The minimal uniton
solution is easy to obtain. Let vðzÞ ∈ CN , with
z ¼ x1 þ ix2, xμ ∈ M, be a single instanton solution in
CPN−1 [26]. Then the minimal uniton in the SUðNÞ PCM is
given byUðz; z̄Þ ¼ eiπ=Nð1 − 2PÞ, whereP is the projector:
Pij ¼ viv

†
j=v

† · v. Figure 1 (left) depicts a small uniton
in SUð2Þ.
Our results here suggest that the uniton amplitude

provides a substitute for instantons in theories with a trivial
homotopy group. We write the amplitude associated
with the basic uniton event and observe its relation to
the strong scale
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UðμÞ ∼ det½OUðμÞ�e−½8π=g2ðμÞ�; Λ2β0 ¼ μ2β0U; (2)

where det OU encodes the Gaussian fluctuations around the
uniton saddle point. In contrast, for theories with instan-
tons, we would have Λβ0 ¼ μβ0I , and β0 ¼ N is the one-
loop β function of the theory.
Fractons.—We cannot directly study the dynamics of the

theory on R2, because the PCM becomes strongly coupled
at large distances, just like YM and CPN−1. However, there
exists a way to continuously connect the strongly coupled
PCM on R2 to a weakly coupled calculable regime,
analogous to the double-trace deformation of the YM
theory [27]. Then, we can address many NP questions in
weak coupling and, by adiabatic continuity, extract uni-
versal results valid even at strong coupling. This setup also
permits us to see the fractionalizaton of unitons into their
constituents, the fractons. The construction involves intro-
ducing the twisted boundary conditions Uðx1;x2þLÞ¼
eiHUðx1;x2Þe−iH, eiH ¼ Diag½e2πiμ1 ; e2πiμ2 ;…; e2πiμN �, or
equivalently turning on an x2 component of a background
gauge field for the SUðNÞV symmetry so that
∂μU → DμU ¼ ∂μU þ iδμ2L−1½H;U�. Then we study the
dynamics of the action Sb ¼ ðN=2λÞ RM d2x trjDμUj2. It
turns out that there is a unique choice for the μi, determined
by the condition of unbroken ZN center symmetry, such
that the small-L theory is continuously connected to its
large-L limit, without phase transitions or rapid crossovers
as a function of L. For more details, see [28].
Working with the special small-L theory defined above,

the easiest way to show the splitting of a uniton into
fractons is the following. Let vtwðzÞ be a single instanton
solution in CPN−1 on R × S1 in the presence of twisted
boundary conditions, which exhibits fractionalization of an
instanton into kink instantons as the size moduli of the
instanton is changed from small to large [11,14]. Then,
the uniton in the SUðNÞ PCM is given by Utwðz; z̄Þ ¼
eiπ=Nð1 − 2PtwÞ, where Ptw ¼ vtwðvtwÞ†=ðvtwÞ†vtw.
Figures 1 (right) and 2 depict the fracton constituents of
a uniton for N ¼ 2, 3, 4.
It is straightforward to construct explicit solutions

corresponding to isolated fractons in the SUðNÞ PCM.
For instance, for SUð2Þ, by using Hopf coordinates θ, ϕ1,
ϕ2, the action is

S ¼ 1

g2

Z
M
½ð∂μθÞ2 þ cos2θð∂μϕ1Þ2 þ sin2θð∂μϕ2 þ ξδμ2Þ2�;

where ξ ¼ 2πðμ2 − μ1ÞL−1. In the small-L regime, forget-
ting about the high Kaluza-Klein modes, we land on QM
with a nontrivial potential on the SUð2Þ manifold:
S ¼ ðL=g2Þ RR½θ: 2 þ cos2θϕ

: 2
1 þ sin2θϕ

: 2
2 þ ξ2sin2θ�, where

the crucial existence of the potential term is due to the
nontrivial background holonomy. The equations of motion
associated with this action admit the solution ϕ1;2 ¼ ϕ0

1;2
and θðx1; xð0Þ1 Þ ¼ 2arccot½e−ξðx1−xð0Þ1

Þ�. The constants of
integrations fϕ0

1;ϕ
0
2; x

ð0Þ
1 g are the three zero modes asso-

ciated with a fracton. These configurations, which emerge
for ξ ≠ 0, are stable, since they are just instantons from the
point of view of the small-L effective field theory. The
small-L effective potential on the SUð2Þmanifold yields an
effective ”topology” stabilizing the fractons in this regime.
Hence, in the small-L limit in which we work, the
individual fracton contributions to the path integral are
free of ambiguities.
As in the gauge theory on R3 × S1 and the CPN−1 model

on R × S1, where there exist Kaluza-Klein (KK) monopole
instantons [12,13] and KK kink instantons [14], respec-
tively, which are associated with the affine root of the
SUðNÞ algebra, there is also a KK fracton in the PCM. By
taking this into account, there are N basic types of fractons
in the SUðNÞ PCM in a ZN symmetric background, each of
which carries 1=N of the action of a uniton. Namely,

F i ∼ e−½8πðμiþ1−μiÞ=g2� ∼ e−ð8π=g2NÞ; U ¼
YN
i¼1

F i: (3)

The surprise here with respect to earlier work [12–15,29] is
that we are now considering a theory which does not have
instantons. Since each fracton carries three zero modes, and
each uniton is composed from N fractons, the number of
the combined zero and quasizero modes of a uniton must be
3N. This is analogous to what happens in the CPN−1
model, where each instanton has 2N exact zero modes, and
each kink instanton has two zero modes.
Renormalon and uniton ambiguities on R2.—The IR

renormalon divergence and ambiguities on R2 can be

FIG. 1 (color online). Action densities S for small (left) and
large (right) SUð2Þ unitons in the setting described in the text.
The large uniton splits into two fractons.

FIG. 2 (color online). Action densities S for large SUð3Þ
and SUð4Þ unitons, which split into three and four fractons,
respectively.
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determined in two different ways. One is by studying a
subclass of planar Feynman diagrams. The number of
planar diagrams grows only exponentially [30,31], but a
subset of such diagrams contribute factorially due to
momentum integration at large orders; hence, the effect
is present at large N as well [8]. Another way is using the S
matrix and Bethe-ansatz equations (starting with the
standard assumptions thereof, such as that the theory is
gapped). The approaches must give the same answer, but
for the PCM the second approach has been the main one
pursued, with the result that the nonalternating late terms in
the perturbative series diverge as n!ðλ=8πÞn, meaning that
the perturbative series is non-Borel resummable [2]. This
produces an ambiguity of the form �ie−ð8πk=g2NÞ. The IR
renormalon singularities found in Ref. [2] lie on the
positive real Borel axis at

R2∶ tþk ¼ 8πk=N ¼ k½g2SU �=β0; k ∈ Zþ: (4)

The appearance of the ’t Hooft coupling in the IR
renormalon ambiguity means that, unlike instanton–anti-
instanton and uniton ambiguities, it does not go away in the
large-N limit. Also note that the leading IR renormalon
singularity is proportional to the square of the strong scale,
e−½8π=g2ðQÞN� ∼ ðΛ=QÞ2, where Q is the Euclidean
momentum.
In theories with instantons and a nontrivial homotopy

group πd, the leading IR renormalon ambiguity is approx-
imately e−SIĪ=β0 ¼ e−2SI=β0 and is exponentially larger than
the ½IĪ �� ambiguity, as emphasized by ’t Hooft [7]. In the
PCM, the relation between the leading renormalon and
uniton ambiguity is e−ð8π=g2NÞ ∼ e−SU=β0 . Since π2½T � is
trivial for the PCM, there is nothing preventing the uniton
amplitude from canceling the ambiguity in the Borel
resummation due to a singularity in the Borel plane
associated with the perturbative sector. This is to be
contrasted with instantons, which carry a topological
charge, and cannot cure perturbative series ambiguities
due to singularities in the Borel plane. Indeed, on R2, we
expect a Borel plane singularity related to the combina-
torics of Feynman diagrams, which we conjecture is
connected to the uniton amplitude. The cancellation
mechanism for the IR renormalon ambiguities on R2 is
unknown, but after spatial compactification to smallR × S1

the theory is under control. Below, we provide a micro-
scopic mechanism of cancellation on R × S1 in the regime
of the theory continuously connected to R2.
Continuity and cancellation of semiclassical renormalon

ambiguities on R × S1.—At small L, the theory reduces to
QM, which is continuously connected to the 2D QFT.
Consider the ground state energy E. The late terms of the
perturbative series for E involve a nonalternating divergent
subseries. Upon left or right Borel resummation S0�E at
g2 þ i0�, we find a twofold ambiguous result [28]:

S0�Eðg2Þ ¼ ReB0∓i
32π

g2N
e−ð16π=g2NÞ (5)

reflecting the non-Borel summability of the theory on the
argðg2Þ ¼ 0 Stokes line. This is the semiclassical realiza-
tion of the renormalon ambiguity. The associated semi-
classical singularities in the Borel plane are located at

R × S1∶ tþ;s:c:
k ¼ 16πk

N
¼ 2 × k ×

g2SU
β0

; k ∈ Zþ (6)

diluted by a factor of 2 with respect to R2 but parametri-
cally in the same neighborhood as the IR renormalon
singularities of ’t Hooft seen in (4).
Remarkably, as predicted by the resurgence theory of

Ecalle [16], this ambiguity cancels against the fracton-
antifracton correlated events, for which the leading ampli-
tude at g2 þ i0� are given by [28]

½F iF̄ i�θ¼0� ¼ Re½F iF̄ i� þ i Im½F iF̄ i�θ¼0�

¼
�
log

�
λ

16π

�
− γ

�
16

λ
e−ð16π=λÞ

� i
32π

λ
e−ð16π=λÞ: (7)

This leads to the cancellation of the nonperturbative
ambiguities coming from the perturbative series against
the ambiguity that arises from the NP saddle. That is,

ImB0;θ¼0� þ Im½F iF̄ i�θ¼0� ¼ 0: (8)

This is a QFT example of Borel-Écalle resummation, a
generalization of Borel resummation to account for the
Stokes phenomenon [10,11,32].
Mass gap on R × S1 and R2.—A speculation by ’t Hooft

that IR renormalons may be related to the mass gap and
confinement in QCD [7] finds a concrete realization in our
approach. The leading ambiguity on R2 is proportional to
e−½8π=g2ðQÞN� ∼ Λ2=Q2, and recent works [10,11] have
shown that, in the semiclassical domain, it is always
“half” of the renormalon which leads to a mass gap.
If we assume that this semiclassical fact extrapolates to
the strongly coupled domain, we observe that indeed
e−½4π=g2ðQÞN� ∼ Λ=Q, proportional to the first power of
the strong scale. In our current example, in the semi-
classical domain, the mass gap is a one-fracton (half-
renormalon) effect and is given by mg ∼ ð1=LNÞe−ð8π=λÞ ∼
ΛðΛLNÞ for LNΛ≲ 2π. In future work, it would be
important to understand fully the origin of the dilution
factor highlighted in Eq. (5) as the theory moves contin-
uously from the semiclassical domain to the strongly
coupled domain.
Conclusions.—The resurgence theory shows that in the

principal chiral model (an asymptotically free theory with-
out stable instantons) naive homotopy considerations are
insufficient to classify saddle points in the path integral.
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Requiring the model to be well defined in the sense of
Borel-Écalle summability [10,11], together with the physi-
cal principle of continuity and spatial compactification
[27], leads to the existence of new non-BPS fracton
solutions giving a semiclassical realization of IR renorma-
lons and also provides a quantum interpretation to the
classical uniton solutions. The fracton contributions to
the path integral of the PCM give the microscopic origin
of the mass gap of the theory.
These results illustrate the general lesson that all non-

perturbative saddle points, not only self-dual and stable
ones, can make vital contributions to path integrals in
theories with or without instantons. While our discussion
focused here on the PCM, similar ideas apply to OðNÞ and
Spð2NÞ sigma models [33] and also to pure Yang-Mills
theory, where the resurgent approach provides a more
refined classification of NP saddles relative to the naive
homotopy classification.
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