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We experimentally test the error-disturbance uncertainty relation (EDR) in generalized, strength-variable
measurement of a single photon polarization qubit, making use of weak measurement that keeps the initial
signal state practically unchanged. We demonstrate that the Heisenberg EDR is violated, yet the Ozawa and
Branciard EDRs are valid throughout the range of our measurement strength.
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The error-disturbance uncertainty relation (EDR) is one
of the most fundamental issues in quantummechanics since
the EDR describes a peculiar limitation on measurements
of quantum mechanical observables. In 1927, Heisenberg
[1] argued that any measurement of the position Q of a
particle with the error ϵðQÞ causes the disturbance ηðPÞ
on its momentum P so that the product ϵðQÞηðPÞ has a
lower bound set by the Planck constant. The generalized
form of the Heisenberg EDR for an arbitrary pair of observ-
ables A and B is given by

ϵðAÞηðBÞ ≥ C; (1)

where C ¼ jh½A; B�ij=2, ½A;B� ¼ AB − BA, and h� � �i
stands for the mean value in a given state. It should be
emphasized that Eq. (1) is not equivalent to the following
relation that is mathematically proven [2,3]:

σðAÞσðBÞ ≥ C; (2)

where σðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA2i − hAi2

p
is the standard deviation.

Indeed, the Heisenberg EDR (1) is derived from (2) under
certain additional assumptions [4–9], but could fail where
such assumptions are not satisfied.
In 2003, Ozawa [10] proposed an alternative EDR that is

theoretically proven to be universally valid

ϵðAÞηðBÞ þ ϵðAÞσðBÞ þ σðAÞηðBÞ ≥ C: (3)

The presence of two additional terms indicates that the first
Heisenberg term ϵðAÞηðBÞ is allowed to be lower than C,
violating Eq. (1). To derive Eq. (3), the error and disturb-
ance were defined [10] for any general indirect measure-
ment model depicted as a “measurement apparatus”
(MA) in Fig. 1

ϵðAÞ≡ h½U†ðI ⊗ MÞU − A ⊗ I�2i1=2;
ηðBÞ≡ h½U†ðB ⊗ IÞU − B ⊗ I�2i1=2; (4)

where the average is taken in the state jψis ⊗ jξip of the
signal-probe composite system, U is a unitary operator that
provides interaction between the signal and probe systems,
and M is the meter observable in the probe to be directly
observed. The definition of ϵðAÞ is uniquely derived
from the classical notion of root-mean-square error if
U†ðI ⊗ MÞU and A ⊗ I commute [11], and otherwise,
it is considered as a natural quantization of the notion of
classical root-mean-square error (see Supplemental
Material [12]). The definition of ηðBÞ is derived analo-
gously, although there are recent debates on alternative
approaches [11,13–17].
Most recently, Branciard [18] has improved the Ozawa

EDR as

�
ϵðAÞ2σðBÞ2 þ σðAÞ2ηðBÞ2

þ 2ϵðAÞηðBÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðAÞ2σðBÞ2 − C2

q �
1=2

≥ C; (5)

which is universally valid and tighter than the Ozawa EDR.
Here ϵðAÞ and ηðBÞ are still defined by Eq. (4). It is also
pointed out [18] that the above relation becomes even
stronger for spin measurements as described later.
For experimental testing of EDRs, so far, two methods

have been proposed: One is the so-called “three-state
method” [9], in which ϵðAÞ, for instance, is obtained through
the measurements of M on the prepared signal states, jψis,
Ajψis, and ðAþ IÞjψis, as shown in Fig. 1(a). The three-
state method was demonstrated in recent experimental tests
of EDRs for qubit systems: projective measurement of a neu-
tron-spin qubit [19,20] and generalized measurement of a
photon-polarization qubit [21]. The other method is called
the “weak-probe method” [22,23]. The three-state method
is simpler to implement for a single qubit system, but the
weak-probe method is more feasible in a general case. In
this method, as shown in Fig. 1(b), a “weak probe” (WP)
measures A or B with a weak measurement strength prior
to the main measurement operated by the MA. When the

PRL 112, 020402 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

17 JANUARY 2014

0031-9007=14=112(2)=020402(5) 020402-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.020402
http://dx.doi.org/10.1103/PhysRevLett.112.020402
http://dx.doi.org/10.1103/PhysRevLett.112.020402
http://dx.doi.org/10.1103/PhysRevLett.112.020402


measurement strength is sufficiently small, the signal state
is sent to the MA without being disturbed by the WP. As
Lund and Wiseman [22], and Ozawa [23] pointed out,
the error (disturbance) defined by Eq. (4) is given by the
“weak-valued root-mean-square difference” between meas-
urement outcomes of the WP and the MA (postmeasurement
of B)

ϵðAÞ2 ¼
X
i;f

ðai –afÞ2Pwvðai; afÞ;

ηðBÞ2 ¼
X
i;f

ðbi –bfÞ2Pwvðbi; bfÞ; (6)

where Pwvðai; afÞ is the weak-valued joint probability
distribution [24,25] taking the outcomes ai in the WP
and af in the MA. As described later, we can experimen-
tally estimate Pwvðai; afÞ, and thus ϵðAÞ, by evaluating the
probability distribution Pðai; afÞ that we take the out-
comes ai and af. Similarly, ηðBÞ is given by Pwvðbi; bfÞ
taking outcomes bi in the WP and bf in the postmeasure-
ment of B.
Recently, Rozema et al. [26] demonstrated the experi-

mental test of EDRs for a single-photon polarization meas-
urement using the weak-probe method. They used a pair of
entangled photons, one for a signal qubit subjected to the
main measurement and the other for an ancillary qubit sub-
jected to the weak-probe measurement. The state of the
ancillary qubit after the weak-probe measurement was then
“teleported” onto the signal qubit and subjected to the main
measurement. Although this fascinating scheme did work,
in a real experiment it was rather complicated; imperfect
teleportation fidelity and rather strong measurement
strength used for the WP resulted in a considerable amount
of disturbance on the system state. As a consequence, the

rhs of the EDR was decreased to C ∼ 0.8 [26] from its ideal
value C ¼ 1.
In this Letter, we report the experimental test of the

EDR for a single-photon polarization measurement using
the weak-probe method. Our experiment uses only linear
optical devices and single photons without entanglement,
in a straightforward manner to the original proposal by
Lund and Wiseman [22]. Another advantage of our design
is that it provides in principle no loss apparatuses for the
WP and MA, unlike lossy apparatuses used in the previous
experiment [26]. With this simple implementation, we
can use sufficiently weak measurement strength for the
WP that causes very little disturbance on the signal state.
We show that our results clearly violate the Heisenberg
EDR, yet validate both the Ozawa [10] and Branciard
[18] relations.
Our optical implementation of the weak-probe method is

based on the quantum circuit model [22] depicted in
Fig. 1(c). We take the signal observable to be measured as
A ¼ Z andB ¼ X, whereX; Y, and Z denote the Pauli matri-
ces, andfj0i; j1ig are the eigenbasis ofZwith the eigenvalues
of f1; –1g. The postmeasurement observable for X is Xf,
and the probe observable in the MA and WP are Zf and Zi,
respectively. Then,we use the following notation as themeas-
urement outcomes: ai;f ¼ zi;f ¼ �1 and bi;f ¼ xi;f ¼ �1.
We employ two cascaded circuits as the WP and MA; both
circuits work in the samemanner. In theMA, the probe qubit

initialized to j0ip is rotated by SðθÞ ¼
�
cos θ sin θ
sin θ − cos θ

�
,

where 0 ≤ θ ≤ π=4. Then, the probe qubit is subjected to a
controlled-NOT (CNOT) operation with the signal qubit.
The positive operator valued measure (POVM) elements cor-
responding to the outcomes of zf ¼ �1 are [21]

Πzf¼�1 ¼
1

2
½I � ðcos 2θÞZ�: (7)

Here, cos 2θ is the “measurement strength” of the MA. By
changing cos 2θ from 0 to 1, Πzf¼�1 change from identity
(no measurement) to projector (strong measurement). The
WP works in exactly the same manner as the MA except
that the measurement strength of the WP is cos 2θw.
In order to keep the WP’s measurement strength suffi-
ciently weak, θw should be close to π=4. In addition,
two Hadamard gates (H) are inserted to the signal qubit
before and after the CNOT in the WP when weak measure-
ment for X is taken.
The experimental setup to test the EDR by the weak-

probe method is illustrated in Fig. 2(a). In our experiment,
horizontal and vertical polarizations, jHi and jVi, of a sin-
gle photon are chosen as the signal qubit with eigenstates
j0i and j1i of Z, respectively. Thus, the measurement in
the MA corresponds to the polarization measurement
in the H–V basis and does the postmeasurement of X to
the �45∘ linear polarization basis. In this apparatus, the

FIG. 1 (color online). Schematic diagram to test error-disturb-
ance relation using (a) three-state method and (b) weak-probe
method. (c) Quantum circuit model of the weak-probe method
for single-qubit observables A ¼ M ¼ Z and B ¼ X.
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probe qubit is the path degree of freedom of the same
photon; the two output paths correspond to the two possible
outcomes of the probe qubit. Thus, we need two MAs after
the WP and two post X measurement apparatuses after each
MA. Figure 2(b) illustrates our optical implementation of
the WP and MAwhich are based on the idea of a variable
polarization beam splitter [27,28,21]. In the present experi-
ment, we employed the displaced Sagnac configuration
[29] that provides much higher phase stability than the
Mach-Zehnder configuration used in our previous experi-
ment [21]. The corresponding quantum circuit of our
instrument is shown in Fig. 2(c), which provides the same
POVM as that of Fig. 1(c) when the initial probe state is
j0ip (see Supplemental Material [12]). For the WP and
X postmeasurement, we use polarization beam splitters
(PBSs) with er ≃ 100 and et > 103, where er and et are
the PBS reflection extinction ratio and transmission extinc-
tion ratio [21], respectively. For the PBSs used in the MA,
er ≃ 50 and et > 103.

As a photon source, we used a continuous-wave diode
laser (LD) whose center wavelength was at 686 nm, and
the laser power was strongly attenuated by an attenuator
(ATT) so that the mean photon number existing in the
whole apparatus at a time was ∼0.002. Although we used
a faint coherent state instead of a single-photon state as the
input, the expected result is the same regardless of the pho-
ton statistics because the apparatus consists of linear optics
and single-photon detection. To take the most stringent test
of the Ozawa and Heisenberg EDRs, we chose the signal
state as jψ0is ¼ ðjHi þ ijViÞ= ffiffiffi

2
p

, an eigenstate of Y, so
that the rhs of the EDRs become the maximum value in
the qubit measurement; C ¼ jh½Z; X�ij=2 ¼ jhYij ¼ 1.
We used a polarizer (POL) and a quarter-wave plate
(QWP) to prepare the signal qubit in jψ0is. A half-wave
plate (HWP) rotated at 22:5∘ worked as a Hadamard gate
for polarization qubits, rotating the photon’s polarization by
45∘. The HWPs before and after the WP changed the meas-
urement basis of the WP, between Z and X. In the experi-
ment, the measurement strength of the WP was set to
cos 2θw ¼ 0.104 that produced a very small disturbance
in the initial signal state; we expected C ¼ 0.995, which
was close to the ideal value C ¼ 1. Then, the signal photon
was subjected to the MA. Because the WP had two output
outcomes, we put two identical MAs after the WP. At each
outputportof theMA,weput an instrument for theX postmea-
surement, consistingofaHWP,PBS,and twophotoncounting
detectors.We recorded the photon counting eventsNijk in the
single-photon detectors, where the subscript i, j, k ¼ 0, 1
denotestheoutcomesoftheWP,MA,andXpostmeasurement,
respectively. From Eq. (6) and the expression of weak-valued
joint probability distribution [22], ϵðZÞ is given by

ϵðZÞ2 ¼ 2

�
1–

1

cos θw

X
zi;zf

zizfPðzi; zfÞ
�
; (8)

wherePðzi; zfÞ is the joint probability distribution taking the
outcomes zi in theWP and zf in the MA. Note that cos θw is
the measurement strength of theWP. ηðXÞ is given by simply
replacing zi and zf with xi and xf, respectively. To evaluate
ϵðZÞ and ηðXÞ using Eq. (8), we experimentally obtain
Pðzi; zfÞ, and Pðxi; xfÞ, analyzing the statistics of the single
photoncountingratesNijk oftheeightsingle-photondetectors.
For instance, Pðzi¼1; zf¼1Þ ¼ P

kN00k=
P

i;j;kNijk.
Thus, the quantities of ϵðZÞ and ηðXÞ obtained are shown

in Fig. 3(a). The error bars are obtained by rms of repeated
measurements for ten times. The dashed curves represent the
theoretical calculations of ϵðZÞ and ηðXÞ assuming the ideal
instrument shown in Fig. 1(c), and the solid curves are those
in which the imperfect extinction ratio of the PBS is taken
into account (detailed discussion is given in Refs. [22,21]).
The experimentally measured error and disturbance present
good agreement with the theoretical calculations. A small
amount of systematic deviation from the calculation might
originate from additional experimental imperfections that

FIG. 2 (color online). (a) Schematic diagram of the experi-
mental setup. Our optical implementation is separated into
the state preparation, WP, MA, and post X measurement. In
these apparatuses, our signal qubit is the polarization state
of a photon, and the path degree of freedom of the same photon
is the probe qubit; each apparatus has two output paths (0 or 1)
corresponding to the measurement outcomes. For the weak
measurement of X, additional HWPs (dashed rectangles) are
inserted on both sides of the WP. The WP and MA are based
on the polarization-division Sagnac interferometer (b) and
the corresponding quantum circuit is depicted in (c), where
the quantum operations of the PBS, HWPs, and mirrors are
indicated (see Supplemental Material [12]). The glass plate
compensates the phase difference between the two counterpro-
pagating paths.
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are not fully understood yet. Nevertheless, we clearly see the
trade-off relation between the error and disturbance; as the
measurement strength increases, ϵðZÞ decreases while ηðXÞ
increases. The experimental error and disturbance remain
finite even when the other goes to zero in the ideal case, since
the error and disturbance are given by rms difference
between �1-valued observables.
From the experimentally measured error and disturbance,

we evaluate the quantities of the lhs of the EDRs. We plot
the lhs of the Heisenberg EDR [Eq. (1), blue], the Ozawa
EDR [Eq. (3), red], and the Branciard EDR [Eq. (5), purple],
as shown in Fig. 3(b). Also plotted is the stronger Branciard
EDR (green) that is applicable to the case (including ours)
where the system and probe observables are both �1 valued
and hAi ¼ hBi ¼ 0 [hence σðAÞ ¼ σðBÞ ¼ 1] [18]

h
~ϵðAÞ2 þ ~ηðBÞ2 þ 2~ϵðAÞ~ηðBÞ

ffiffiffiffiffiffiffiffiffiffiffi
1–C2

p i
1=2

≥ C; (9)

where ~ϵ ¼ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1–ϵ2=4

p
and ~η ¼ η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1–η2=4

p
. The solid and

dashed curves are the theoretical predictions for each
EDR with and without the imperfect extinction ratio of
the PBS taken into account. In our experiment, the rhs of
the EDRs is C ¼ 0.995, which is indicated by the
gray line. Our experimental results demonstrate the clear
violation of the Heisenberg EDR, while the Ozawa and
Branciard EDRs are always satisfied throughout the range
of our measurement strength. We see that the Branciard
EDRs are stronger than the Ozawa EDR; they are closer
to the lower bound C than that of Ozawa. In particular,
the lhs of Eq. (9) saturates to the lower bound (C ¼ 1)
for the ideal case. Our results exhibit near saturation to
the lower bound, when experimental imperfection originat-
ing from nonideal PBSs is taken into account. In this exper-
imental demonstration of the new, stronger EDR, the use of
weak measurement with sufficiently weak measurement
strength is essential. It is also noteworthy that the experimen-
tal results are consistent with those reported in Ref. [21] in
which we used a similar apparatus and the three-state method
to test the Heisenberg and Ozawa EDRs.
In Fig. 4, we plot the predicted lower bounds of the

EDRs in Eqs. (1), (3), (5), and (9), together with the exper-
imental data. Under the Heisenberg EDR, the error or dis-
turbance must be infinite when the other goes to zero, while
other EDRs allow a finite error or disturbance even when
the other is zero. Again, we see that the experimental data
violate the Heisenberg EDR, yet satisfy the Ozawa and
Branciard EDRs. Our experimental data were close to
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FIG. 3 (color online). Experimental results. (a) The error ϵðZÞ
(blue circles) and disturbance ηðXÞ (red squares) as functions of
the measurement strength cos 2θ. Dashed curves are the theoreti-
cally calculated error and disturbance for perfect implementation
of the quantum circuit presented in Fig. 1(c). Solid curves are the
theoretical values after the nonideal extinction ratio of a PBS is
taken into account. (b) Left-hand sides of the EDRs. Blue circles:
the Heisenberg EDR in Eq. (1). Red squares: the Ozawa EDR in
Eq. (3). Purple triangles: the Branciard EDR in Eq. (5). Green
diamonds: the Branciard EDR in Eq. (9). Dashed and solid curves
are plotted in the same way as (a). The right-hand side of the
EDRs (C ¼ 0.995) is indicated by the gray line, which is nearly
overlapped by the dashed green curve.
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FIG. 4 (color online). Comparison of EDRs’ lower bounds in the
error–disturbance plot. Blue (solid) curve: the Heisenberg bound in
Eq. (1). Red (short dashed) curve: the Ozawa bound in (3). Purple
(long dashed) curve: the Branciard bound in (5). Green (dotted-
dashed) curve: the Branciard bound in (9). Black (filled) circles:
experimental data shown in Fig. 3(a). Black (dotted) curve:
theoretical prediction for our experiment using imperfect PBSs.
The lower-left side of each bound is the forbidden region by
the corresponding EDR. Each bound was calculated for C ¼ 1.
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the Branciard bound (dotted-dashed curve) given in Eq. (9),
which could be saturated by ideal experiments.
In conclusion, we have experimentally tested the

Heisenberg, Ozawa, and Branciard EDRs in generalized
photon polarization measurements making use of weak
measurement that keeps the initial signal state practically
unchanged. Our experimental results clearly demonstrated
that the Ozawa and Branciard EDRs were valid, but that the
Heisenberg EDR was violated throughout the range of the
measurement strength (from no measurement to projective
measurement). In particular, our results demonstrated near
saturation to the lower bound of the stronger Branciard
EDR. Such experimental investigation of the EDRs will
be of demanded importance not only in understanding fun-
damentals of physical measurement but also in developing,
for instance, novel measurement-based quantum informa-
tion and communication protocols.
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