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The recent years have witnessed an emergence of the field of all-spin-based devices without any flow of
charge. An ultimate goal of this scientific direction is the realization of the full spectrum of spin-based
networks as in modern electronics. The concept of energy-storing elements, indispensable for those
networks, are so far lacking. Analyzing analytically the size dependent properties of magnetic chains that
are coupled via either exchange or long-range dipolar or Ruderman-Kittel-Kasuya-Yosida interactions, we
discover a particularly simple law: magnetic configurations corresponding to helices with integer number
of twists, which are commensurate with the chain’s length, are energetically stable. This finding, supported
by simulations and an experimentally benchmarked model, agrees with the study [R. Skomski et al.,
J. Appl. Phys. 111, 07E116 (2012)] showing that boundaries can topologically stabilize structures that are
not stable otherwise. On that basis, an energy-storing element that uses spin at every stage of its operation
is proposed.
DOI: 10.1103/PhysRevLett.112.017206 PACS numbers: 75.25.-j, 75.10.Hk, 75.40.Mg, 75.45.+j

A challenge for solid state physics at the nanoscale is to
develop energetically efficient information and communi-
cation technologies. While spintronics, spin caloritronics,
and magnonics focus on the interaction of spins with
charges, heat currents, or external fields, the most recent
strategy is to create devices that do not require the spin to
charge conversion but that use the spin degree of freedom
only to store and process information [1,3,4]. This idea is
very appealing because of the variety of systems in which
the micro- and nanoscopic magnetic dipoles with different
anisotropy axes can now be artificially produced. The list
includes atomic spin ensembles [2,3], magnetic nanoarrays
[4–8], structured multilayers and superlattices [9,10],
colloids [11], and molecular systems [12,13]. In order to
transmit and process information without electric currents
or external fields, intrinsic interactions are needed. The
most ubiquitous in different kinds of magnetic system
interactions are the direct and indirect [e.g., Ruderman-
Kittel-Kasuya-Yosida (RKKY)] exchanges and the dipolar
coupling. Short, antiferromagnetically coupled via RKKY
or dipolar interaction chains (spin leads) have already been
utilized to transmit the information of the state of an “input”
ferromagnetic dot to the “gate” dot [1,9]. It has also been
realized that the detailed structure of those antiferromagnetic
(AFM) states depends on the chain length [14]. For such
nanosized systems, however, there has been up to now no
clear understandingof how the competition between the finite
length of those chains and the order of interactions manifests
itself in time-dependent magnetic order [14]. Especially
intriguing is the aspect elaborated in Ref. [15], showing that
boundary conditions might induce topologically protected
excitations. Clearly, this lack of knowledge hampers further
development of the all-spin-based information technology.
In this Letter, studying theoretically the size dependence

of magnetic order in chains with exchange, RKKY, and

dipolar interactions, we discover a particularly simple law:
magnetic configurations corresponding to the modulated
helices with integer number of twists, which are commen-
surate with the chain’s length, are topologically stable and
correspond to local energy minima separated by energy
maxima. This finding explains the stability of spin helices
arising intrinsically in one dimensional systems [16–18].
We confirm these results using Monte Carlo (MC) and

Landau-Lifshitz-Gilbert spin dynamics (SD) simulations
and a magnetomechanical model. We also demonstrate that
a chain can be forced towards one of the topologically
stable states by the rotation of end spins. By further
rotation, the helix can be wound up towards higher energy
levels and pinned in this stable state to store energy.
Unpinning this spin at a later time leads to release of
the stored energy, which can be used to perform work or
transfer information. The proposed device can be realized
in structured multilayers [9,10], chains of nanoparticles or
molecules [12,13], nanoarrays [8], and atomic chains [1].
The starting point of our calculations is a linear (along the

x axis) chain of N dipoles coupled by either exchange or
RKKYor dipolar interaction and possessing a uniaxial (easy
axis or easy plane) anisotropyK arising due to the magneto-
crystalline anisotropy, particle shape, or higher-order multi-
polar contributions. Here we describe results for the most
complicateddipolar coupling.However, theycanbe straight-
forwardly adopted to the RKKYor exchange interactions:

H ¼ D
X

ij

�
Si · Sj

r3ij
− 3

ðSi · rijÞðSj · rijÞ
r5ij

�
− K

X

i

ðSx
i Þ2;

(1)

whereSi is a three-dimensional unit vector and rij denotes the
distance vector between moments i and j. All information
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about the saturationmagnetizationMs ofaparticle is, as usual,
hidden in the interactionconstantD ¼ μ0M2

s=2.First,we look
for the exact total number of critical points of Hamiltonian (1)

solving the set of equations ∇⃗P
N
i;j H ¼ 0⃗ as explained in SI1

in the Supplemental Material [21]. We reveal 3 × 2N sta-
tionary points (minima, maxima, or saddle points) related to
noncollinear solutions, and the question is what the magnetic
configurations corresponding to these metastable states
look like.
To answer this question analytically we utilize the

method used for construction of spin-density waves. The
magnetic structure is regarded as a superposition of spirals
in the 2D Brillouin zone under the requirement of the
constant magnetic moment at all sites. The energy of the
constructed structure is then analyzed. The spin spirals
can be described via vectors δ and q in the form (i) SðrÞ ¼
S½sinðδrÞ cosðqrÞ; sinðδrÞ sinðqrÞ; cosðδrÞ� or (ii) SðrÞ ¼
S½sinðδrÞ; cosðδrÞ sinðqrÞ; cosðδrÞ cosðqrÞ�. For q ¼ 0 and
r∥Ox, for example, (i) gives a spin spiral SðxÞ ¼
S½sinðδxÞ; 0; cosðδxÞ� in the xz plane. The energy of this
spin configuration as a function of δ is plotted as a dashed
line in Fig. 1(a). It is seen that the energy is minimal (Emin 1)
at δ ¼ π, i.e., corresponds to the AFM alignment of
neighboring spins and is known as the ground state of a
chain with easy xz plane [see Fig. 1(c)]. There is only one
minimum in this case, and the envelope lines of the AFM
structure Fig. 1(c) are straight. If, however, (δ, q) differ
from these special values, the energy spectrum changes
dramatically: it adopts many local energy minima and
maxima, in good agreement with our analytical analysis.
The contour plot of the energy Eðδ; qÞ for a chain of
N ¼ 10 dipoles is shown in Fig. 1(b). Several cross sections
of this two-dimensional energy surface for different K are
shown in Fig. 1(a). Fascinatingly, the minima occur for all
fq; δg ¼ f�ðnπ=NÞ; π � ðmπ=NÞg for K < −2.3D and
fq;δg¼f�ðnπ=NÞ;π�ðπ=2NÞþðmπ=NÞg for K > 2.3D
with integer m ∈ ½0; N� and n ∈ ½0; N�. In other words, the
energy spectrum becomes discrete and the energy gaps
become size dependent; i.e., we observe all components of
quantum confinement. The deepest minima, i.e., stablest
energy levels, correspond to magnetic helices (MH) with
integer number of turns along the chain, as shown in
Fig. 1(c), and can be uniquely described using quantum
numbers m and n defining wave vectors δ and q, which are
commensurate to the chain length. The number of helix
turns is given by the smaller wave vector. For example, if
δ ≥ π, then q ¼ π=N corresponds to one helix turn of the
entire chain.
To explore complete configurational space beyond the

two-wave-vectors approximation, MC and SD simulations
have been performed. Additionally, a magnetomechanical
model presented in Fig. 2 and described in [21] has been
constructed. While the MC procedure has been developed
to describe the equilibrium properties of many-body
systems, the SD gives an exact dynamical path from one

configuration to another. The details of the numerical
procedure are described in [19–21]. According to the
MC analysis, the stable equilibrium configuration of a
dipolar chain of length N for kT > 0.1D and −1.2D <
K < 2D indeed corresponds to Emin 2 in Fig. 1(c), i.e., to
ðq; δÞ ¼ ðπ=N; π � ðπ=NÞÞ. Only at lower temperatures or
higher anisotropy the ground AFM state can be achieved.
Our SD simulations demonstrate that the exact dynamical

FIG. 1. (a),(b) One- and two-dimensional representation of
the energy of modulated helices in a dipolar chain consisting of
10 moments as a function of δ and q. (c) SzðrÞ for several energy
levels. The thick lines in (c) show the envelope lines of double
helices corresponding to the magnetic moments (arrows) in two
sublattices. The dashed parabola in (a) corresponds to the energy
of the harmonic spiral SðxÞ ¼ Sðsin δx; 0; cos δxÞ; the black, red,
and blue curves correspond to EðδÞ of modulated helices with
K ¼ 0 and q ¼ 0, q ¼ π=N, and q ¼ 2π=N, respectively, while
the cyan line shows EðδÞ for q ¼ π=N andK ¼ 2.5D. The energy
scale in (b) goes linearly from −0.8D (blue) to þ0.8D (yellow).
(d) Three-dimensional representation of an intermediate helix
state found in the SD simulations for N ¼ 81 (video SI2 [21]) for
K − 1.23μ0M2

s at T < 1 K. (e) End configuration of SD simu-
lations for K ¼ 0 and starting configuration identical to (d).
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path towards the global energy minimum strongly depends
on the starting configuration and passes through several
energy MH states as predicted above. Starting with the
Sfsin½ðπ þ ðπ=NÞÞx�; cos½ðπ þ ðπ=NÞ�xÞ; 0g state, e.g., one
ends up with a half-turn helix for anisotropy comparable
with the dipolar energy. Another example of dynamical
relaxation is recorded in video SI2 in the Supplemental
Material [21], while one of intermediate configurations is
shown in Fig. 1(d). Even for K ¼ 0 the system often freezes
in modulated structure, as shown in Fig. 1(e). In accordance
with the simulations, the most probable stable states of the
experimental chain established after mechanical agitation
were spin spirals with π or π=2 twist. In addition to the
easy-plane rotation of magnetization, a systematic modula-
tion of the easy-axis component was also clearly observable.
The less probable, but still stable, spiral with q ¼ 3π=2N
configuration is documented in Fig. 2.
The reasons for the stability of MHs are as follows:

(i) the internal fields in these structures coincide with
the orientation of dipoles, and (ii) those states cannot be

transformed into the ground state by continuous deforma-
tion; i.e., they are topologically stable. Hence, if one fixes
the ends of a chain, the helical structure will remain at the
local energy minimum. Next, we want to use this property
to achieve different (δ, q) states artificially. To do so,
we propose to rotate magnetization of one of the terminal
dipoles introducing energy into the chain. The conse-
quences of this procedure are documented in MC simu-
lations (Fig. 3), SD simulations (videos SI3,4,6 [21]), and
magnetomechanical model (video SI5 [21]).
The Monte Carlo simulations have been performed for

chains of length N ¼ 70a. The equilibrium winding-up
process is shown in Fig. 3(a). Initially, the slow annealing
procedure has been applied. At the end of this relaxation, at
kT ¼ 0.05D, the chain has adopted the MH state with
q ¼ π=N; i.e., the entire chain acquired half of a modu-
lation period. This state was taken as the starting configu-
ration for the winding-up process. Next, the first spin
has been rotated with the velocity ðπ=2Þ=ð2 × 105 MCSÞ,
because our analysis showed that the period of
2 × 105 MCS was long enough to achieve a new equilib-
rium state. After nine subsequent rotations, which are
illustrated Fig. 3(a), the chain arrived at the stable q ¼
5π=2N helix. The other end of the chain remained free.
In Fig. 3(b) the time dependence of the z component of
magnetization for the first and the last spins is monitored.
One sees that the rotation of the last spin is somewhat
delayed comparably to the rotation of the first spin because
of the system’s retarding in the stable energy levels.
Another interesting observation concerns the propagation
velocity of a knot in the spiral. The velocity of propagation

FIG. 2. Magnetomechanical model [21]. The magnets do not
contain any connecting wire. They are hanging each on its own
soft, nonmagnetic filament and coupled via magnetostatics only.
The hole is larger than the diameter of the filament and magnets
may rotate without screwing it. Left: Stable spin helix with
modulation vector q ¼ ð3=2Þðπ=14Þ. Right: General view of the
model. Silver and green colors represent the north and the south
poles, respectively.

FIG. 3 (color online). MC simulations of a linear chain of 70
dipoles with K − 1.23μ0M2

s at kT < 1 K. (a) Winding up of
the spiral. Each snapshot of SzðrÞ corresponds to a relaxed state.
The far-left moment (red) has been rotated with velocity of
ðπ=2Þ × 105 MCS. (b) Time dependence of the far-left (black
line) and the far-right (red line) moments. (c) Release of the stored
energy: the left moment is fixed downwards. (d) Nonlinear time
dependence of the chain-averaged hSzi. A typical angle distribu-
tion in a relaxed helix is shown in the inset.
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decreases with increasing q, as shown by dashed red line,
and can be described by a function of the form v ¼ at2

with the negative acceleration a. The backward process is
depicted in Figs. 3(c) and 3(d). The first spin is fixed now
and the chain’s relaxation is monitored. The back rotation
was again decelerated, as shown in Fig. 3(d). The whole
process, however, took much longer as the spiral had been
released at the local energy minimum.
The MC results are in very good agreement with the SD

simulations shown in video SI3,4 for dipolar coupling and
SI6 for ferromagnetic exchange interaction [21]. The time
scale depends on the strength of the magnetic interactions
and damping parameters. For a chain made out of
35 × 35 × 2 nm nanoparticles, interparticle distance
20 nm, and Gilbert damping of 0.01, the entire winding-
up process of video SI3,4 [21] corresponds to milliseconds.
Additionally, SD reveals new interesting aspects of the
winding process. The first, evident conclusion is that the
velocity of the entire process depends on the velocity of
forced rotation of the first spin. The unexpected finding is
that formation of each new turn of the magnetic helix is
accompanied by an abrupt change in the magnetization of
several dipoles in the case of dipolar interaction. Initially,
the neighbors of the first dipole rotate coherently with a
certain phase shift. The internal energy of the chain climbs
thereby towards a local energy maximum (e.g., Emax 1 in
Fig. 1). When the rotation angle approaches a critical value,
the local maximum is achieved, and an abrupt change in the
orientations of dipoles happens as the system falls down into
the next stable state corresponding to two turns of the helix
(see video SI3 [21]). During this process some of the dipoles
continue to rotate in the direction of forced winding up,
while others rotate in the opposite direction. In our magneto-
mechanical experiment, the states with larger q’s are also
achieved after the magnetization jumps described above,
as demonstrated in video SI5 [21]. Hence, the magnetic
helix can be “clicked into place,” which is different from
Dzyaloshinskii-Moriya spin spirals [3] as discussed in [21].
The click into place behavior during thewinding-up process
exists also for q ¼ 0, i.e., for Sx ¼ 0. If we repeat the same
procedure for a chain coupled via nearest-neighbor ferromag-
netic exchange interaction with the same interaction strength
anddamping, the behavior is the samebutno jumpsoccur (see
video SI6 [21]), because the relaxation time of the chain
becomes comparablewith the angular rotationvelocity.When
a wound-up chain is released (video SI4 [21]), the stored
energy becomes large enough to overcome several barriers.
The unusual properties of MH open several interesting

perspectives in view of applications. Probably the most
important one concerns the new way of energy storage. One
of the oldest methods, which is still actively utilized in a
number of applications, is the spring wind-up technique.
An example, familiar to everyone, is a clockwork device
mechanically powered by a mainspring. In this method one
end of a mechanical spring is fixed, while the other is

rotated until the spring is wound up. Then the latter spring
terminal is released and the stored potential energy trans-
forms into the kinetic energy of a clock arrow, a motor, a
pump, etc. A similar procedure can be applied to the MHs.
By rotation of one chain’s end via local fields or spin-
polarized currents, the helix can be forced towards smaller
periodicities and, thus, higher energy. The system can be
left in this new stable configuration to store introduced
energy. The stored energy can then be transformed into its
mechanical or magnetic counterparts to make work as
visualized in the videos in [21] and Fig. 3.
In conclusion, the results described above demonstrate that

the finite magnetic chains coupled by an exchange, RKKY,
or dipolar interactions possess a quantized energy spectrum
depending on the chain geometry, material of elements, and
the shape of the particles. This unique energy spectrum
results in topologically protected configurations in the form
of magnetic helices with integer number of revolutions and
opens broad perspectives for future investigations concerning
the dynamics of this nontrivial system and quantum effects
on length scales from micrometer to a few angstrom.
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