
Domain Walls and Their Experimental Signatures in sþ is Superconductors

Julien Garaud1,2,* and Egor Babaev1,2
1Department of Physics, University of Massachusetts Amherst, Massachusetts 01003, USA

2Department of Theoretical Physics, Royal Institute of Technology, Stockholm, SE-10691, Sweden
(Received 15 August 2013; published 8 January 2014)

Arguments were recently advanced that hole-doped Ba1−xKxFe2As2 exhibits the sþ is state at certain
doping. Spontaneous breaking of time-reversal symmetry in the sþ is state dictates that it possess domainwall
excitations. Here, we discuss what are the experimentally detectable signatures of domain walls in the
sþ is state.We find that in this state thedomainwalls canhaveadipolelikemagnetic signature (incontrast to the
uniformmagnetic signature ofdomainwallspþ ip superconductors).Wepropose experimentswherequench-
induced domainwalls can be stabilized by geometric barriers and observed via their magnetic signature or their
influence on the magnetization process, thereby providing an experimental tool to confirm the sþ is state.
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The recently discovered iron-based superconductors [1]
may exhibit new physics originating in the possible
frustration of interband couplings between more than two
superconducting components [2–5]. For a two-band super-
conductor, interband Josephson interaction either locks
or antilocks phases, so that the ground state interband phase
difference is respectively 0 or π. Similarly, for more than two
bands, each interband coupling favors (anti)locking of the
two corresponding phases. However, these Josephson terms
can collectively compete so that optimal phases are neither
locked nor antilocked. There, the resulting frustrated phase
differences are neither 0 nor π. Since it is not invariant under
complex conjugation, such a ground state spontaneously
breaks the time-reversal symmetry (TRS) [2,3]. This is the
sþ is state, with the spontaneously broken time-reversal
symmetry (BTRS), that recently received strong theoretical
support in connectionwith hole-doped Ba1−xKxFe2As2, [5].
There are also other scenarios for BTRS states in pnictides
[6,7], and related multicomponent states may possibly exist
in other classes of materials [8].
Symmetrywise, these BTRS states break the Uð1Þ × Z2

symmetry. The topological defects associated with the
breakdown of a discrete Z2 symmetry are domain walls
(DWs) segregating regions of different broken states [9].
Other superconductors with BTRS and having domain
walls are the chiral p-wave superconductors. There are
evidences for such superconductivity in Sr2RuO4 [10]. For
that material, it is predicted that domain walls have
magnetic signature and, thus, can be detected by measuring
the magnetic field (see, e.g., Refs. [11,12]). These signa-
tures were searched for in surface probes measurements,
but were not experimentally detected [13]. This led to
intense theoretical investigation of possible mechanisms for
the field suppression (see, e.g., Ref. [14]). The problem of
interaction of vortices, domain walls, and the magnetization
process in these systems was studied in Refs. [15,16].
Domain walls between BTRS states are also highly

important in the rotational response of 3He [17]. Aspects
of topological defects of the sþ is states received attention
only recently [18–21]. The remaining question is how
domain walls can be created and observed in sþ is
superconductors. In this Letter, we demonstrate that these
objects can be stabilized by geometric barriers in meso-
scopic samples and discuss associated experimental
signatures.
It is well known that going through a phase transition

allows uncorrelated regions to fall into different ground
states [22,23]. This is the Kibble-Zurek (KZ) mechanism
for the formation of topological defects (see Ref. [24] for a
review and Ref. [25] for a discussion in the context of chiral
p-wave superconductors). As different regions fall into
either of the Z2 states, domain walls are created while a
superconductor goes through the transition to the broken

FIG. 1 (color online). This figure shows the symmetry breaking
pattern for a frustrated three-band superconductor. Surfaces show
the potential energy as a function of the phase differences, at
different temperatures. The blue line shows the ground state.
Above TZ2

, phases are locked and the ground state is unique up to
overall U(1) transformations. Below TZ2

the ground state is
degenerate and time-reversal symmetry is broken.
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Uð1Þ × Z2 state. Figure 1 shows the time-reversal sym-
metry breaking process while cooling down to the
sþ is state (see Ref. [5] for microscopic calculations of
the appearance of the sþ is state). Since their energy
increases linearly with their length, closed domain walls
contract and collapseor are absorbedbyboundaries.Herewe
propose a mechanism to stabilize domain walls, using
geometrical barriers. We use numerical simulations that
mimic the KZ mechanism to depict experimental setups to
nucleate, stabilize, and observe domain walls in the sþ
is state.
We use here the minimal Ginzburg-Landau (GL) free

energy functional modeling a frustrated three-band super-
conductor

F ¼B2
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The complex fields ψa ¼ jψajeiφa represent the super-
conducting condensates. They are electromagnetically
coupled by the vector potential A. The coupling constant
e is used to parametrize the London penetration length of
the magnetic field B ¼ ∇ × A. The temperature depend-
ence of the coefficients is modeled as αa ≃ αð0Þa ðT=Ta − 1Þ
[αð0Þa and Ta being characteristic constants]. We investigate
only a limited range of the reduced temperature
T=Tc ∈ ½0.8; 1�. In general the GL coefficients have more
complicated temperature dependencies (see, e.g.,
Ref. [26]). However these dependencies are not very
important for the questions studied here. Our results should
also apply qualitatively beyond the GL regime. This is
because, as shown in Ref. [5], the GL model captures the
overall structure of normal modes and length scales of the
full microscopic theory of the sþ is state.
In the frustrated regime, when all three Josephson terms

cannot simultaneously attain their optimal values, the
resulting ground state phase differences φab ≡ φb − φa
are neither 0 nor π [3,4]. The ground state, thus, sponta-
neously breaks the time-reversal symmetry. For general
consideration of phase locking between an arbitrary num-
ber of components, see Ref. [27].
As mentioned above, we model formation of domain

walls during a cooling though the Z2 phase transition. We
explore different temperature dependent routes to the TRS
breaking, predicted by microscopic theory [3,5]. The first
route, which we refer to as set I (see the Supplemental
Material [28] for details and the chosen values of GL
parameters), is the transition from the sþþ state to the sþ is
state. There, the system goes from a three-band TRS state to
a three-band BTRS. The alternative possibility, which we
refer as set II, is the transition from the s� state to the sþ is
state, that is, from a two-band (TRS) state to three-band

BTRS [3,5]. Since there are two discrete ground states,
different regions of a superconductor with BTRS can fall in
either the Z2 states and these regions are separated by
domain walls created during the BTRS phase transition (at
T ¼ TZ2

). We consider field configurations varying in the
xy plane, with a normal magnetic field, and assume
translational invariance along the z direction. The Gibbs
free energy G ¼ F − B ·H describes superconductors
subject to an external field H ¼ Hez. To evaluate the
different responses the Gibbs free energy is minimized
[29] within a finite element framework provided by the
FREEFEM++ library [30] (for details, see the discussion in
the Supplemental Material [28]).
While a frustrated superconductor is quenched through

TZ2
, the temperature of the BTRS phase transition, domain

walls are created. Because of their line tension, domain
walls are dynamically unstable to be absorbed by the
boundaries, or collapse if they are closed. Here we propose
a mechanism for stabilization of domain walls, by using a
geometric barrier. Such a barrier exists in samples with
nonconvex geometry, as, for example, shown in Fig. 2.
Next we will show that when a domain wall is stabilized it
has experimentally detectable features that can signal the
sþ is state. As shown in Fig. 2, if during a quench a
domain wall ending on nonconvex bumps is created, it can
relax to a stable configuration. Indeed, to join its ends and
collapse to zero size, the domain wall would have to
increase its length first; it is, thus, in a stable equilibrium
while trapped on the bumps. Exactly the same effect is

FIG. 2 (color online). A geometrically stabilized domain wall in
a nonconvex domain, at T=Tc ¼ 0.8 for the parameter set I. The
domain wall is geometrically trapped, since to escape it should
increase its length, which is energetically costly. The phase
difference φ12 shows that during the cooling, domain walls were
created and one has been stabilized by the sample’s geometry.
The unfavorable phase differences at the domain wall affect the
densities of the condensates. jψ1j2 overshoots at the domain wall,
while jψ2j2 and jψ3j2 are depleted. Note that the domain wall has
a magnetic signature: spots of the dipolelike magnetic field,
where the domain wall touches the bumps. It originates in
features of the interband counterflow at the domain wall,
discussed in the text. The upper right panel shows the contribu-
tion to the magnetic field of the second term in Eq. (2).
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present when there is a pinning by inhomogeneities instead
of a geometric barrier (see Fig. 3). This kind of pinning
induces similar magnetic dipole signatures.
To simulate cooling experiments, the energy is mini-

mized at T ¼ Tc þ δT, i.e., starting in the normal state. The
temperature is subsequently decreased with a step δT and
the energy minimized for the new temperature (i.e., new
αa’s). The faster the system undergoes a phase transition, the
more defects are nucleated. This is achieved, in our
simulations, by cooling with bigger temperature steps
(see the animations in the Supplemental Material [28] for
a typical domain-wall–stabilizing process). Domain walls
are always created, but their location is random and, thus,
they do not always geometrically stabilize. We performed
several simulations of the cooling processes and verified
that indeed the number of produced defects is larger when
temperature steps are bigger. Conversely, to ensure that no
DW is formed, the system has to be cooled very slowly.
Remarkably, as shown in Figs. 2 and 3, even in zero

applied field the domain wall carries opposite, nonzero
magnetic field at its ends. Yet the total net flux through the
sample is zero. The magnitude of this effect depends on the
width of the domain wall (and, thus, on the parameters of
the model). For Fig. 2, the amplitude of the local fields is of
the order of magnitude of a percent of the magnetic field of
a vortex. The origin of this signature in the sþ is state is
principally different from the magnetic signature of domain
walls in a pþ ip superconductor. Namely, in pþ ip
superconductors, DWs carry uniform magnetic field origi-
nating frommechanisms which do not have a counterpart in
sþ is superconductors (see, e.g., Refs. [12,14,25]). Here,
by contrast, the domain walls carry magnetic field only
where they are attached to the boundary and the field
inverts its direction so that there is no net flux. This
magnetic field originates in interband counterflow in the

presence of relative density gradients. Indeed, the magnetic
field has the following dependence on the field gradients
[20]:

Bz ¼ −ϵij∂i

�
Jj

ejΨj2
�
− iϵij
e2jΨj4 ½jΨj2∂iΨ†∂jΨ

þΨ†∂iΨ∂jΨ†Ψ�; (2)

with Ψ† ¼ ðψ�
1;ψ

�
2;ψ

�
3Þ and jΨj2 ¼ Ψ†Ψ. The interband

counterflow contribution to B is the second term in Eq. (2),
that is, density gradients mixed with gradients of phase
differences (see Figs. 2 and 3). In the total magnetic field
signature, counterflows are partially screened by the first
term in Eq. (2).
For modeling field cooled experiments, the Gibbs energy

for a given applied field H is minimized for decreasing
temperatures. This is shown in Fig. 4. At Tc supercon-
ductivity sets in and the sample is filled with vortices. Then
while the temperature is further decreased, past the Z2

phase transition (at TZ2
), the KZ mechanism leads to the

formation of domain walls. As shown in Fig. 4, the
preexisting vortices stabilize the domain walls against
collapse (regardless of the geometry). These domain walls
are either closed or terminate on the boundary. Closed
domain walls stabilized by vortices were considered in
Refs. [18,20]. Being characterized by CP2 topological
invariant, these are Skyrmions. Note that to accommodate
the unfavorable phase differences at the DW, it is beneficial
to split vortices into three types of fractional vortices (see
the detailed discussion in Refs. [18,20]). At the DW, the
vortices are less localized and their magnetic signature is
more smeared out. The DW can clearly be identified when
measuring the magnetic field.

FIG. 3 (color online). A domain wall stabilized by randomly
located pinning centers. When cooled past TZ2

, domain walls are
formed at random positions. Then, during the relaxation
process, the quench-induced domain wall is stabilized against
collapse by nearby pinning centers. Displayed quantities and
physical parameters are the same as in Fig. 2. Here again, the
domain wall has a dipolelike signature of the magnetic field
where it is attached to the pinning centers.

FIG. 4 (color online). Field cooled experiment for the param-
eter set II, under an applied field H=Φ0S ¼ 70. First, the system
is a two band (ψ2 ¼ 0) and, thus, it is TRS. When cooled through
TZ2

(ψ2 ≠ 0) the system enters the BTRS regime and different
regions pick up different ground state phase locking. The
resulting DWs are stabilized against complete contraction by the
already existing vortices.
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Consider now the magnetization process at fixed
T < TZ2

. No field is initially applied (H ¼ 0) and the
superconductor is in one ground state. The applied field is
increased with a step δH. There are no preexisting DWs
and, as long as the applied field is below Hc1, no vortex
enters. TheMeissner state survives to fields higher thanHc1
because of the Bean-Livingston barrier. While the applied
field is further increased, vortices enter and arrange in a
triangular lattice. Note that big steps δH can provide
enough energy to locally fall into the opposite Z2 state
during a relaxation process. This leads to the formation of a
domain wall, which is stabilized by the presence of vortices
(see the Supplemental Material [28]).
Now we consider the regime of our main interest. As

shown in Fig. 5, the magnetization process in the presence

of a quench-induced and geometrically stabilized domain
wall is very unusual. The first vortex entry occurs at much
lower fields than Hc1. Here, a core is created only in one
band; thus, it is a fractional vortex that enters the domain
wall. Fractional vortices are thermodynamically unstable in
a uniform bulk superconducting state because they have
logarithmically divergent energy [20]. The situation here is
different because the sample has a preexisting domain wall.
See the Supplemental Material [28] for all quantities. In
increased field the domain wall is filled with vortices.
Despite its energy cost, it eventually becomes beneficial to
elongate the domain wall. It starts bending and gradually
fills the sample. At the first integer vortex entry, the
sample is already filled by the flux-carrying DW. The
associated magnetization curve also shows striking
differences from the case without domain walls. This
can provide a way to confirm sþ is superconductivity.
For a sample whose geometry allows stabilization of DWs,
the magnetization process after a rapid cooling (or other
kind of quench) can be significantly different from
that of the same, slowly cooled sample. The first will
show a magnetization process different from the reference
measurement. Chances to stabilize the domain walls are
further enhanced by having multiple stabilizing geometric
barriers.
In conclusion, we have studied domain walls in sþ is

superconductors. We presented a proposal for an exper-
imental setup that can lead to formation of stable domain
walls. We demonstrated that domain walls in sþ is super-
conductors have magnetic signatures that could be detected
in scanning SQUID, Hall, or magnetic force microscopy
measurements. Moreover we showed that for a geometri-
cally stabilized DW, the magnetization curve could change
substantially as the DW allows flux penetration in the
form of fractional vortices in low fields. Thus, a sample
subject to different cooling processes should exhibit very
different magnetization processes and magnetization
curves.
The observation of these features can signal the sþ is

state (because, in contrast, the s� and sþþ states do not
break Z2 symmetry and, thus, have no domain walls), for
example, in hole-doped Ba1−xKxFe2As2 [5].
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FIG. 5 (color online). Magnetization process of a three-band
BTRS, when the zero field configuration has the geometrically
stabilized domain wall (Fig. 2). First, vortex entry, way belowHc1,
shown in the top row is a fractional vortex in ψ3. This can be seen
from the phase differenceφ13 whichwinds 2π. The red curve is the
corresponding magnetization curve, while the blue curve is a
reference magnetization, starting from a uniform ground state.

PRL 112, 017003 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

10 JANUARY 2014

017003-4



[1] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J.
Am. Chem. Soc. 130, 3296 (2008).

[2] T. K. Ng and N. Nagaosa, Europhys. Lett. 87, 17003 (2009).
[3] V. Stanev and Z. Tesanovic, Phys. Rev. B 81, 134522 (2010).
[4] J. Carlström, J. Garaud, and E. Babaev, Phys. Rev. B 84,

134518 (2011).
[5] S.Maiti andA. V.Chubukov,Phys.Rev.B87, 144511(2013).
[6] W.-C. Lee, S.-C. Zhang, and C. Wu, Phys. Rev. Lett. 102,

217002 (2009).
[7] C. Platt, R. Thomale, C. Honerkamp, S.-C. Zhang, and

W. Hanke, Phys. Rev. B 85, 180502 (2012).
[8] S. Mukherjee and D. F. Agterberg, Phys. Rev. B 84, 134520

(2011).
[9] N. S. Manton and P. Sutcliffe, Topological Solitons

(Cambridge University Press, Cambridge, England, 2004).
[10] J. Xia, Y. Maeno, P. T. Beyersdorf, M.M. Fejer, and

A. Kapitulnik, Phys. Rev. Lett. 97, 167002 (2006).
[11] M. Matsumoto and M. Sigrist, J. Phys. Soc. Jpn. 68, 994

(1999).
[12] D. G. Ferguson and P. M. Goldbart, Phys. Rev. B 84,

014523 (2011).
[13] C. W. Hicks, J. R. Kirtley, T. M. Lippman, N. C. Koshnick,

M. E. Huber, Y. Maeno, W.M. Yuhasz, M. B. Maple, and
K. A. Moler, Phys. Rev. B 81, 214501 (2010).

[14] S. Raghu, A. Kapitulnik, and S. A. Kivelson, Phys. Rev.
Lett. 105, 136401 (2010).

[15] Y. Matsunaga, M. Ichioka, and K. Machida, Phys. Rev. B
70, 100502 (2004).

[16] M. Ichioka, Y. Matsunaga, and K. Machida, Phys. Rev. B
71, 172510 (2005).

[17] P. M. Walmsley and A. I. Golov, Phys. Rev. Lett. 109,
215301 (2012).

[18] J. Garaud, J. Carlström, and E. Babaev, Phys. Rev. Lett. 107,
197001 (2011).

[19] S.-Z. Lin and X. Hu, New J. Phys. 14, 063021 (2012).
This work studied dynamics of unstable closed domain
walls and reported appearance of magnetic signatures. We

did not observe this kind of magnetic signatures in our
simulations, which by contrast focuses on (quasi-)equilib-
rium configurations.

[20] J. Garaud, J. Carlström, E. Babaev, and M. Speight, Phys.
Rev. B 87, 014507 (2013).

[21] T. Bojesen, E. Babaev, and A. Sudbø, arXiv:1306.2313.
[22] T. W. B. Kibble, J. Phys. A 9, 1387 (1976).
[23] W. H. Zurek, Nature (London) 317, 505 (1985).
[24] R. Rivers, J. Low Temp. Phys. 124, 41 (2001).
[25] V. Vadimov and M. Silaev, Phys. Rev. Lett. 111, 177001

(2013).
[26] M. Silaev and E. Babaev, Phys. Rev. B 85, 134514 (2012).
[27] D. Weston and E. Babaev, Phys. Rev. B 88, 214507 (2013).
[28] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.112.017003 for details
of the parameters and numerical methods. Animations of the
magnetization processes and field cooled experiments are
also available.

[29] Note that the KZ mechanism involves actual time depend-
ence. In our approach, we use a minimization algorithm
instead of solving the actual time-dependent equations. At
each temperature, once the algorithm has converged, the
system is stationary. Then the temperature is changed by a
certain amount δT and minimization is repeated. Thus, we
do not simulate the actual Kibble-Zurek dynamical problem.
Rather, it is a quasiequilibrium process that mimics the
features of the KZ mechanism. Our quasiequilibrium
simulation accounts for a number of features that would
happen in the actual time-dependent evolution (such as
spontaneous domain wall formation when the step δT is
sufficiently large, which corresponds to a rapid cooling).
While we cannot predict the rate for formation of topologi-
cal defects, this simulation is sufficient to study the problem
of geometric stabilization.

[30] F. Hecht, O. Pironneau, A. Le Hyaric, and K. Ohtsuka, The
Freefem++ Manual (Universite Pierre et Marie Curie, Paris,
2007), 3rd ed.

PRL 112, 017003 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

10 JANUARY 2014

017003-5

http://dx.doi.org/10.1021/ja800073m
http://dx.doi.org/10.1021/ja800073m
http://dx.doi.org/10.1209/0295-5075/87/17003
http://dx.doi.org/10.1103/PhysRevB.81.134522
http://dx.doi.org/10.1103/PhysRevB.84.134518
http://dx.doi.org/10.1103/PhysRevB.84.134518
http://dx.doi.org/10.1103/PhysRevB.87.144511
http://dx.doi.org/10.1103/PhysRevLett.102.217002
http://dx.doi.org/10.1103/PhysRevLett.102.217002
http://dx.doi.org/10.1103/PhysRevB.85.180502
http://dx.doi.org/10.1103/PhysRevB.84.134520
http://dx.doi.org/10.1103/PhysRevB.84.134520
http://dx.doi.org/10.1103/PhysRevLett.97.167002
http://dx.doi.org/10.1143/JPSJ.68.994
http://dx.doi.org/10.1143/JPSJ.68.994
http://dx.doi.org/10.1103/PhysRevB.84.014523
http://dx.doi.org/10.1103/PhysRevB.84.014523
http://dx.doi.org/10.1103/PhysRevB.81.214501
http://dx.doi.org/10.1103/PhysRevLett.105.136401
http://dx.doi.org/10.1103/PhysRevLett.105.136401
http://dx.doi.org/10.1103/PhysRevB.70.100502
http://dx.doi.org/10.1103/PhysRevB.70.100502
http://dx.doi.org/10.1103/PhysRevB.71.172510
http://dx.doi.org/10.1103/PhysRevB.71.172510
http://dx.doi.org/10.1103/PhysRevLett.109.215301
http://dx.doi.org/10.1103/PhysRevLett.109.215301
http://dx.doi.org/10.1103/PhysRevLett.107.197001
http://dx.doi.org/10.1103/PhysRevLett.107.197001
http://dx.doi.org/10.1088/1367-2630/14/6/063021
http://dx.doi.org/10.1103/PhysRevB.87.014507
http://dx.doi.org/10.1103/PhysRevB.87.014507
http://arXiv.org/abs/1306.2313
http://dx.doi.org/10.1088/0305-4470/9/8/029
http://dx.doi.org/10.1038/317505a0
http://dx.doi.org/10.1023/A:1017513531901
http://dx.doi.org/10.1103/PhysRevLett.111.177001
http://dx.doi.org/10.1103/PhysRevLett.111.177001
http://dx.doi.org/10.1103/PhysRevB.85.134514
http://dx.doi.org/10.1103/PhysRevB.88.214507
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.017003
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.017003
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.017003
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.017003
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.017003
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.017003
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.017003

