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The quantum phase transition between the three dimensional Dirac semimetal and the diffusive metal
can be induced by increasing disorder. Taking the system of a disordered Z2 topological insulator as an
important example, we compute the single particle density of states by the kernel polynomial method. We
focus on three regions: the Dirac semimetal at the phase boundary between two topologically distinct
phases, the tricritical point of the two topological insulator phases and the diffusive metal, and the diffusive
metal lying at strong disorder. The density of states obeys a novel single parameter scaling, collapsing onto
two branches of a universal scaling function, which correspond to the Dirac semimetal and the diffusive
metal. The diverging length scale critical exponent ν and the dynamical critical exponent z are estimated,
and found to differ significantly from those for the conventional Anderson transition. Critical behavior of
experimentally observable quantities near and at the tricritical point is also discussed.
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Topological classification of different insulating phases
[1,2] is an emerging new paradigm in condensed matter
physics. Unlike in the Landau theory of phase transitions
that is rooted in the idea of spontaneous breaking of
symmetry [3], it is less clear how to describe different
universality classes of the transitions between topologically
different phases. This is because the usual notion of the
local order parameter characterizing the different phases is
often lacking. At the transition between topologically
distinct phases, on the other hand, the gap closes, and
the system becomes a semimetal. In three dimensions (3D)
such a critical phase is stable in the presence of weak
disorder [4], but as disorder is increased it gives way to a
diffusive metallic state [5]. This transition belongs to a
distinct universality class that exhibits nontrivial dynamical
and diverging length scale exponents z and ν, for example,
[5,6]. The 3D Dirac Hamiltonian in the presence of disorder
is ubiquitous: it applies to certain phases of superfluid 3He
[7], degenerate semiconductors [5], and to the Weyl
semimetals [8–11]. Related theories of disordered critical
points for two-dimensional interacting Dirac fermions and
bosons were also advanced in the past [12,13].
In this Letter we discuss how this disorder-induced

fermionic criticality is reflected in the scaling behavior
of a readily available physical quantity, the single particle
density of states (DOS), which can be understood as a
proper order parameter that characterizes such a transition.
We then express the critical behavior of Dirac electron
velocity, diffusion coefficient, conductivity, and anomalous
diffusion exponent in terms of z and ν. Such a surprisingly
simple description is contrasted with the conventional

Anderson transition [14–16], where the DOS remains
smooth through the transition.
In order to produce and control the semimetallic phase,

we focus on a 3D time-reversal symmetric topological
insulator under disorder. The Z2 topological insulator is
interesting in itself, and has lately been a subject of intense
theoretical and experimental research, with a number of
real material realizations [18]. Consider the phase diagram
of a system exhibiting both weak and strong topological
insulators (WTI and STI) as some parameter is varied
[19–21] (see Fig. 1). In three spatial dimensions disorder is
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FIG. 1 (color online). Typical phase diagram of the system
under consideration. TI1 and TI2 correspond, respectively, to
weak and strong topological insulators (WTI and STI), and DSM
to the critical Dirac semimetal phase. The dotted line in the
diffusive metal (M) phase (c) is an extrapolation [17] of the DSM
line (a). The tricritical point (b) is denoted as Pc.
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irrelevant in the renormalization group sense, so that at
weak disorder a direct transition between two topologically
distinct insulating phases [4], say, between TI1 and TI2,
remains. (In the specific situation we consider below, TI1 ¼
WTI and TI2 ¼ STI.) Only above a finite strength of
disorder W > 0, does the bulk energy gap become com-
pletely filled with impurity levels, so that the insulating
phases are replaced by a diffusive metallic (M) phase [22]
(see Fig. 1). Since TI1 and TI2 are characterized by a
different topological number protected by the bulk energy
gap, at the phase boundary the bulk spectrum is in general
closed. In the present case the system is also protected by
time-reversal symmetry, and such a gap closing appears as
a (Kramers) degenerate pair of point nodes, i.e., as the
Dirac semimetal (DSM) [23] line in the phase diagram. As
disorder is increased the DSM line also terminates at the
intersection with the insulator-metal phase boundary. In the
following we focus on the evolution of the DOS as one
moves along the DSM line, through the tricritical point Pc
where the DSM line terminates, and finally reaches inside
the metallic phase.
We have previously established, by a detailed numerical

study of the conductance [22], that although disorder W
shifts the position of the phase boundary [24–29] (deter-
mined, e.g., by the position of the conductance peak), it is
nevertheless irrelevant; the peak height of the conductance
on the DSM line is not influenced by the disorder strength.
It was also found [22] that on the DSM line the DOS
remains a quadratic function of low energies, exactly as in
the clean limit [see the curves (a) in Fig. 2]. Whereas the
quadratic behavior is left intact by disorder, the coefficient
of the quadratic term, which is related to the velocity v of
Dirac electrons, is renormalized [30], as in Eq. (21) below.

In this Letter we further quantify the behavior of the
DOS on the DSM line toward the diffusive metal phase, and
demonstrate that the DOS obeys a single parameter scaling
typical of second order phase transitions, with new values
of critical exponents. Our analysis is based on the single
parameter scaling hypothesis, which is substantially sup-
ported by numerical results. The scaling behavior of the
DOS is studied using the kernel polynomial method
(KPM) [31].
The 3D disordered Z2 topological insulator is modeled

as a Wilson-Dirac-type tight-binding Hamiltonian with an
effective momentum-dependent mass term [32],

mðkÞ ¼ m0 þm2

X

μ¼x;y;z

ð1 − cos kμÞ; (1)

implemented on a cubic lattice. The topological nature of
the model is controlled by the ratio of two mass parameters
m0 and m2 such that an STI phase with Z2 (one strong and
three weak) indices [19–21] ðν0; ν1ν2ν3Þ ¼ ð1; 000Þ
appears when −2 < m0=m2 < 0, while the regime of
parameters −4 < m0=m2 < −2 falls on a WTI phase with
ðν0; ν1ν2ν3Þ ¼ ð0; 111Þ (see Fig. 1).
In real space our tight-binding Hamiltonian reads

H ¼
X

r

X

μ¼x;y;z

�
jrþ eμi

�
it
2
γμ −m2

2
γ0

�
hrj þ H:c:

�

þ
X

r

jri½ðm0 þ 3m2Þγ0 þ Vr14�hrj; (2)

where eμ is a unit vector in the μ direction, and 14 represents
the 4 × 4 identity matrix. γμ and γ0 form a set of γ matrices
in a 4 × 4 representation,

γμ ¼
�

0 σμ

σμ 0

�
; γ0 ¼

�
12 0

0 −12
�
; (3)

where σμ are Pauli matrices and 12 is the 2 × 2 identity
matrix.m0,m2, and t are mass and hopping parameters, and
Vr represents a potential disorder distributed uniformly and
independently between −W=2 and W=2.
For simplicity, we have assumed the Hamiltonian,

Eq. (2), to be isotropic. In the actual computation we set
the mass and hopping parameters to m2 ¼ 1, t ¼ 2. The
linear size of the system L is taken to be 200 times the
lattice constant, which is enough to reach the thermody-
namic limit of DOS per unit volume. We also take the
average over two samples, although the statistical error is
already sufficiently small for L ¼ 200, because of the self-
averaging nature of the DOS. The order of the Chebyshev
expansion in KPM is typically a few thousand, so that the
DOS becomes smooth. The periodic boundary conditions
are imposed on each direction.
The scaling form of the density of states per volume near

the Dirac point may be derived as follows. Begin with a

FIG. 2 (color online). Density of states calculated at different
points of the phase diagram (2 ≤ W ≤ 7.5). (a) On the WTI/STI
boundary, (b) at the tricritical point, and (c) in the M phase. Its
energy dependence ρðϵÞ is quadratic on the WTI/STI boundary
(a), becoming almost linear at the tricritical point (b), while it
acquires a finite value ρð0Þ at ϵ ¼ 0 on the M side (c). We
emphasize that these DOSs are not of the surface, but of the bulk.
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dimensionless quantity, the number of states Nðϵ; LÞ below
the energy ϵ in the system of size L in d dimensions, and
assume that it is a function of dimensionless parameters
L=ξ and ϵ=ϵ0,

Nðϵ; LÞ ¼ FðL=ξ; ϵ=ϵ0Þ; (4)

where ξ is the characteristic length scale and ϵ0 is the
characteristic energy scale. They are related via the
dynamical exponent z,

ϵ0 ∝ ξ−z: (5)

Since the number of states should be proportional to Ld, the
above scaling form should be

Nðϵ; LÞ ¼ ðL=ξÞdfðϵξzÞ: (6)

From Nðϵ; LÞ, the DOS per volume ρðϵÞ is calculated as

ρðϵÞ ¼ 1

Ld

dNðϵ; LÞ
dϵ

; (7)

so that we finally obtain its scaling form,

ρðϵÞ ¼ ρð−ϵÞ ¼ ξz−df0ðjϵjξzÞ: (8)

The first equality comes from the symmetry of DOS about
ϵ ¼ 0. Upon introducing the distance from the tricritical
point δ ¼ jW −Wcj=Wc, we may assume that the length
scale ξ diverges near the tricritical point Pc as

ξ ∼ δ−ν; (9)

where ν is the critical exponent. Around Pc, the scaling law,
Eq. (8), therefore reads,

ρðϵÞ ∼ δðd−zÞνf0ðjϵjδ−zνÞ: (10)

For ϵ → 0, i.e., when the argument of the scaling function is
small, one expects qualitatively different behavior in theM
phase and on the DSM line. If the system has Dirac cones,
the DOS is expected to be proportional to jϵjd−1 for
jϵj ≪ ϵ0, so

ρðϵÞ ∼ δðd−zÞνðjϵjδ−zνÞd−1 ¼ jϵjd−1δ−ðz−1Þdν: (11)

In the M phase, on the other hand, the DOS is finite at
ϵ ¼ 0, and

ρð0Þ ∼ δðd−zÞνðjϵjδ−zνÞ0 ¼ δðd−zÞν: (12)

Right at the tricritical point δ ¼ 0, ξ dependences in the
prefactor and the argument of Eq. (8) should cancel, and,
consequently,

ρðϵÞ ∼ δðd−zÞνðjϵjδ−zνÞðd−zÞ=z ¼ jϵjðd−zÞ=z: (13)

Armed with the above observations, we next study the
DOS numerically. First, the DOS at ϵ ¼ 0 vanishes
[Fig. 3(a)] around

Wc ¼ 6.4� 0.1: (14)

We use this value to define δ. The DOSs around W ¼ Wc,
i.e., near Pc, are plotted in Fig. 3(b). From the observed
energy dependence and Eq. (13), we estimate

ð3 − zÞ=z ¼ 1.00� 0.15; (15)

z ¼ 1.5� 0.1. (16)

The result is consistent with the value z ¼ 3=2 obtained to
the first order in the critical disorder strength in Ref. [6].
Next we derive the critical exponent ν from the DOS for

small jϵj. On the DSM line, by fitting the data to

ρðϵÞ ∼ cðδÞjϵj2; (17)

and then by fitting the coefficient cðδÞ to the form

cðδÞ−1 ∼ δ3ðz−1ÞνDSM ; (18)

we find [Fig. 4(a)]

3ðz − 1ÞνDSM ≃ 1.16� 0.05; (19)

∴ νDSM ≃ 0.81� 0.21. (20)

FIG. 3 (color online). (a) The DOS at ϵ ¼ 0. The point Wc
where ρð0Þ → 0 indicates the tricritical point Pc. (b) The DOSs
around Wc (solid lines, W ¼ 6.3, 6.4, 6.5 from bottom to top).
They can be approximated by a linear function (dotted line). The
deviations for small energy regions are coming from the finite
size effect ρð0Þ ∼ L−2. We note that the effect of finite ranged
disorder [33], which might survive due to the finite lattice
spacing, is not identified in our numerics.
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The result can be interpreted physically as vanishing
velocity of the Dirac electron along the DSM line towards
the tricritical point δ ¼ 0,

v ∼ δðz−1Þν ≈ δ0.4: (21)

In the M phase, on the other hand, by fitting the data to
Eq. (12), we find [Fig. 4(b)]

ð3 − zÞνM ≃ 1.36� 0.09; (22)

∴ νM ≃ 0.92� 0.13: (23)

The values of νM and νDSM agree within the margin of
error, and one expects in fact the same value on both sides
of the transition. The first order perturbation theory in the
location of the critical point [6] yields the characteristic
νDSM ¼ νM ¼ 1, which also falls within our intervals on
both sides.
Last, and most importantly, we show that the single

parameter scaling law, Eq. (10), fits successfully all of our
numerical data. Figure 5 is the plot of the scaling

combination ρðϵÞδ−ðd−zÞν vs jϵjδ−zν, with the above esti-
mates of Wc, z, and with using the average of the two
exponents, ν ¼ ðνDSM þ νMÞ=2 ¼ 0.86. A similar value for
νwould also follow had we solved Eqs. (19) and (22) under
the assumption that νM ¼ νDSM. After cutting off the
relatively large energy region outside the Dirac cone and
the very small energy region where the DOS becomes too
small to estimate numerically, all the curves in Fig. 2
collapse onto two distinct branches, corresponding to the
M phase and to the DSM line, respectively. This is the
central result of the present work.
The general scaling arguments imply interesting trans-

port properties as well. Consider, for example, the wave
packet dynamics [34]. We assume the mean square dis-
placement hr2ðt; ϵÞi of the state with energy ϵ at time t,
where h� � �i represents both quantal and ensemble averages
to be of the form

hr2ðt; ϵÞi ∼ ξ2gðtξ−z; jϵjξzÞ: (24)

In theM phase, one expects hr2ðt; ϵÞi ¼ 2dDðϵÞt for large t
with DðϵÞ the diffusion coefficient at energy ϵ. We focus
only on the state with ϵ ¼ 0,

hr2ðt; 0Þi ∼ ξ2−zt; (25)

implying the diffusion coefficientDð0Þ to diverge while the
conductivity σð0Þ ∼ ρð0ÞDð0Þ to vanish towards Pc as

Dð0Þ ∼ δ−ð2−zÞν; σð0Þ ∼ δðd−2Þν; (26)

the latter coinciding with the Wegner’s relation [35], and
predicts σð0Þ ∼ δ0.9. At Pc, the ξ dependence should vanish,
leading to

hr2ðt; 0Þi ∼ ξ2ðtξ−zÞ2=z ¼ t2=z ≈ t1.3; (27)

which implies superdiffusion: when z≃ 1.5 < 2, the sys-
tem at Pc is more diffusive than in the M phase. The
numerical verification of such a superdiffusive behavior is,
however, difficult, since we need to focus on the wave
packet dynamics of ϵ ¼ 0 state, the DOS of which is
vanishing. Study is in progress to improve the situation.
Another interesting quantity is the conductance distri-

bution along the DSM line. Away from Pc, the conductance
will be narrowly distributed about the value expected in the
absence of randomness as demonstrated in Ref. [22]. At Pc,
we expect the scale independent broad conductance dis-
tribution as in the case of the Anderson transition [36,37].
In summary, we have proposed the scaling of the density

of states as a characteristic of the semimetal to metal
transition in general, or, of the tricritical point among the
two topologically different insulating phases and the metallic
phase, in particular. In contrast to the conventional Anderson
transitions, the density of states plays the role of the order

FIG. 4 (color online). Dependence on δ (a) for Eq. (18) on the
DSM line and (b) for Eq. (12) in the M phase. We set Wc ¼ 6.4.

FIG. 5 (color online). Single parameter scaling of the DOS. The
upper branch corresponds to the DOS in the M phase, and the
lower branch to the DSM line. We set the parameters Wc ¼ 6.4,
z ¼ 1.5, and ν ¼ 0.86 ¼ ðνDSM þ νMÞ=2.

PRL 112, 016402 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

10 JANUARY 2014

016402-4



parameter and shows the universal single-parameter scaling.
This idea of using DOS to characterize DSM is also relevant
in different systems such as the ones reported recently in
Refs. [33] and [38]. Furthermore, we have estimated numeri-
cally the dynamical exponent z≃ 1.5, which is clearly
different from the conventional value z ¼ 3 [35] for the
Anderson transition in three dimensions. The critical expo-
nent of divergence of the length scale ν≃ 0.9 is less
accurate, but it also seems rather far from the conventional
value ν≃ 1.35 [39] for the Anderson transition in the 3D
symplectic class. The poor inaccuracy of ν originates from
the uncertainty ofWc and z. A high precision estimate ofWc
by different methods such as the transfer matrix [22] would
improve the estimate.
In this Letter, we have focused on the phase boundary of

the strong and weak topological insulators. The reason is
practical; the DSM line and the phase boundary of the
metal to topological insulator phases intersect with a large
angle, allowing us to pinpoint Pc easily. For the phase
boundary of the strong topological and ordinary insulators
(STI/OI) [22], it is rather challenging to locate Pc, because
the DSM line and the phase boundary of the metal to
insulator seem to intersect with a shallow angle. Because of
the universal nature of critical phenomena, we expect
similar scaling behavior with the same critical exponents
for the semimetal to metal transition for STI/OI. On the
other hand, different critical behavior is expected for the
case of the Z topological superconductor described by a
Bogoliubov–de Gennes Hamiltonian, which shows a sim-
ilar phase diagram but belongs to a different universality
class (DIII).
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