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We introduce and analyze an exactly soluble one-dimensional Ising model with long range interactions

that exhibits a mixed-order transition, namely a phase transition in which the order parameter

is discontinuous as in first order transitions while the correlation length diverges as in second order

transitions. Such transitions are known to appear in a diverse classes of models that are seemingly

unrelated. The model we present serves as a link between two classes of models that exhibit a mixed-order

transition in one dimension, namely, spin models with a coupling constant that decays as the inverse

distance squared and models of depinning transitions, thus making a step towards a unifying framework.
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The usual classification of phase transitions distin-
guishes between first order transitions, which are charac-
terized by a discontinuity of the order parameter, and
second order transitions in which the order parameter is
continuous but the correlation length and the susceptibility
diverge. However there are quite a number of cases for
which this dichotomy between first order and second order
transitions fails. In particular, some models exhibit phase
transitions of mixed nature, which on the one hand have a
diverging characteristic length, as typical of second order
transitions, and on the other hand display a discontinuous
order parameter as in first order transitions. Examples
include models of wetting [1], DNA denaturation [2–4],
glass and jamming transitions [5–8], rewiring networks [9],
and some one-dimensional models with long range inter-
actions [10–13]. A scaling approach for such transitions
was introduced in Ref. [14]. Formulating exactly soluble
models of this kind and probing their properties would be
of great interest.

Two distinct classes of models that exhibit mixed tran-
sitions have been extensively studied: (a) one-dimensional
spin models with interactions that decay as 1=r2 at large
distances r, and (b) models of DNA denaturation and
depinning transitions in d ¼ 1 dimension. While in both
classes the appropriate order parameter is discontinuous at
the transition, the correlation length diverges exponentially
in the first class and algebraically in the second. Placing
the two rather distinct classes of models in a unified frame-
work would provide a very interesting insight into the
mechanism that generates these unusual transitions. This
is the aim of the present work.

An extensively studied representative of class (a) is the
one-dimensional Ising model with a ferromagnetic cou-
pling that decays as 1=r� with � ¼ 2, which we shall call
hereafter the inverse distance squared Ising (IDSI) model.
While the model is not exactly soluble, many of its ther-
modynamic features have been accounted for. It was shown
by Dyson that for 1<�< 2 the model exhibits a phase
transition to a magnetically ordered phase [15]. It was then

suggested by Thouless, and later proved rigorously by
Aizenman et al. [12], that in the limiting case � ¼ 2,
the model exhibits a phase transition in which the magne-
tization is discontinuous [10]. This has been termed the
Thouless effect. Using scaling arguments [16–18] and
renormalization group analysis [19], which is closely
related to the Kosterlitz-Thouless analysis, it was found
that the correlation length diverges with an essential sin-

gularity as �� e1=
ffiffiffiffiffiffiffiffiffi
T�Tc

p
for T ! Tc.

A paradigmatic example of models of class (b) is the
Poland-Scheraga (PS) model of DNA denaturation [2–4]
whereby the two strands of the molecule separate from
each other at a melting, or denaturation, temperature. In
this approach the DNA molecule is modeled as an alter-
nating sequence of segments of bound pairs and open
loops. While bound segments are energetically favored,
with an energy gain��l for a segment of length l, an open
loop of length l carries an entropy sl� c lnl. Here �, s > 0
are model dependent parameters and c is a constant
depending only on dimension and other universal features.
For c > 2 the model has been shown to exhibit a phase
transition of mixed nature, with a discontinuity of the
average loop length that serves as an order parameter of
the transition, and a correlation length that diverges as
ðTc � TÞ�1 at the melting temperature Tc.
In this Letter we introduce and study an exactly soluble

variant of the IDSI model in which the the 1=r2 interaction
applies only to spins that lie in the same domain of either
up or down spins. This model can be conveniently rep-
resented within the framework of the Poland-Scheraga
model, thus providing a link between these broadly studied
classes of models. We find that on one hand the model
exhibits an extreme Thouless effect whereby the magneti-
zation m jumps from 0 to �1 at Tc, and on the other hand
it exhibits an algebraically diverging correlation length
��ðT�TcÞ��, and consequently a diverging susceptibility.
The power � is model dependent and it varies with the
model parameters. We also identify an additional order
parameter, the average number of domains per unit length

PRL 112, 015701 (2014) P HY S I CA L R EV I EW LE T T E R S
week ending

10 JANUARY 2014

0031-9007=14=112(1)=015701(5) 015701-1 � 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.015701


n, which vanishes either continuously or discontinuously
at the transition, depending on the interaction parameters
of the model. In addition we find a similar type of transition
(discontinuous with diverging correlation length) at non-
zero magnetic field. This is in contrast to the IDSI model,
which exhibits no transition for nonvanishing magnetic
field [14]. Below we demonstrate these results by an exact
calculation. We also present a renormalization group (RG)
analysis that provides a common framework for studying
both the IDSI and our model, elucidating the relation
between the two.

The model is defined on a one-dimensional lattice with
L sites where in site i, 1 � i � L, the spin variable �i can
be either 1 or �1. The Hamiltonian of the model is
composed of two terms: a nearest neighbor (NN) ferro-
magnetic term �JNN�i�iþ1 and a long range (LR) term
that couples spins lying within the same domain of either
up or down consecutive spins. This intradomain interaction
is of the form�Jði� jÞ�i�j where JðrÞ decays as JLRr�2

for large r. This is a truncated version of the IDSI model.
Note, though, that the long range interaction is in fact a
multispin interaction since it couples only spins that lie in
the same domain. For domains of length l � 1 the energy
due to the intradomain interactions is

EdðlÞ � �JNNðl� 1Þ � JLR
Xl
k¼1

l� k

k2

¼ �blþ ~c loglþ ~�þOðl�1Þ; (1)

where b, ~c, and ~� are constants set by JNN and JLR.
Without loss of generality one may set b ¼ 0 since it
contributes a constant to the total energy. Nearest neighbor
domains interact only through the nearest neighbor inter-
action. The interaction JNN > 0 can be made large enough

so that � � JNN þ ~�> 0 and, hence, domain walls are
disfavored and the model is ferromagnetic. A configuration
of the model is composed of a sequence of N domains of
alternating signs whose lengths fligNi¼1 satisfy

P
li ¼ L.

The corresponding energy is

Hðflig; NÞ ¼ ~c
XN
i¼1

logðliÞ þ N�þOð1Þ: (2)

This representation of the model is reminiscent of the PS
model, where EdðlÞ originates from the entropy of a dena-
tured loop rather than its energy [2]. We also generalize
Eq. (2) to include a magnetic field h, which couples to the
magnetization

P
ið�1Þili.

This model is exactly solvable. The phase diagram of
the model at zero magnetic field is presented in Fig. 1. The
model exhibits a phase transition from a disordered phase
(m � P

L
i �i=L ¼ 0) at T > Tc to a fully ordered phase

(m ¼ �1) at T < Tc, where Tc is the critical temperature.
While m is discontinuous at the transition, the correlation
length diverges and, hence, the transition is of mixed order.

In addition to the magnetization, the transition may be
characterized by another order parameter, the density of
domains n � N=L. In the disordered phase there is a mac-
roscopic number of domains and, hence, n > 0, while in the
ordered phase there is essentially a single macroscopic
domain—a condensate—and, hence, n ¼ 0. The behavior
of n near the transition depends on the nonuniversal para-
meter c��c~cwhere�c¼ðkBTcÞ�1 is the inverse transition
temperature, which depends on the interaction parameters:
for 1< c � 2 (region I in Fig. 1) the density of domains
decreases continuously to 0 as T ! Tc from above, while
for c > 2 (region II), n attains a finite value n ! nc as
T ! Tc from above, and it drops discontinuously to 0 at
the transition.
The model also exhibits a condensation transition at

finite magnetic field as presented in Fig. 2(a). The transition
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FIG. 1. The (T, c) phase diagram of the model (2) for zero
magnetic field h ¼ 0 and � ¼ 1. The transition line is marked
as a continuous and dashed line in regions I (1<c�2) and II
(c>2), respectively.

0 1 2 3 4
−1

0

1
m=1

m=−1

−1<m<1
II

I

T

h

(a)

0
T

h

(c)

0
T

h

(b)

FIG. 2. (a) The (T, h) phase diagram of the model (2) compared
with the phase diagram of (b) the IDSI model and (c) a schematic
phase diagram of a typical first order transition. The parameters
in (a) are ~c ¼ 4 and �¼logðUð0ÞÞ so that Tcðh¼0Þ¼1. Here the
thick solid line is first order transition, the dashed lines represent
mixed order transition, and the thin solid lines a second order
transition. Tricritical points separating mixed order from second
order transitions are indicated. In (b) and (c) the lines are first
order. The terminal point in (b) is a mixed-order point. In (c) the
solid point is a triple point while the empty circles are ordinary
critical transitions.
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at nonzero field does not involve symmetry breaking. It can
be either second order, where both m and n change con-
tinuously to their ordered values m ¼ �1 and n ¼ 0, or of
mixed order, where bothm and n change discontinuously at
the transition. This depends on whether cðhÞ � �cðhÞ~c is
greater or smaller than 2, where �cðhÞ is the magnetic-field
dependent critical temperature. Qualitatively the phase dia-
gram at a given magnetic field h � 0 is identical to that of
the PS model, with cðhÞ playing the role of c. On the other
hand, the resulting phase diagram [Fig. 2(a)] is different
from that of the IDSI model, presented in Fig. 2(b), for
which no transition takes place at a nonvanishing magnetic
field [14]. It is also different from the phase diagram of an
ordinary first order transition such as the mean-field Ising
spin 1 model, which is presented in Fig. 2(c), for which
each of the finite h transition lines terminates at a critical
point at some finite value of h. By contrast, the finite h
transition lines in Fig. 2(a) extend to h ! 1.

We shall now outline the derivation of the phase diagram
(see Supplemental Material [20]). The Hamiltonian (2)
represents a gas of noninteracting domains with a fugacity
�. Correlation between domains is introduced, though, by
the constraint that the sum of li is L, the chain length. The
system is thus most conveniently studied within the grand
canonical ensemble. The grand canonical partition func-
tion is given by

QðpÞ ¼ X
L

ZðLÞe�pL ’ X
L

e��LðFð�Þ�pÞ; (3)

where ZðLÞ is the canonical partition function, Fð�Þ is the
free energy per site, and p is effectively the pressure.
Working with the symmetric boundary conditions �1 ¼ 1
and �L ¼ �1, a configuration is defined by a sequence of
an even number of alternating þ and � domains of vari-
able sizes. Denoting by UðpÞ the grand partition sum of a
single domain and by y � e��� the fugacity of domains,
the explicit form of the grand partition sum is then

QðpÞ � y2UðpÞ2 þ y4UðpÞ4 þ � � � ¼ y2UðpÞ2
1� y2UðpÞ2 ; (4)

UðpÞ ¼ X1
l¼1

e�pl

l�~c
¼ ��~cðe�pÞ; (5)

where ��ðrÞ is the polylogarithm function [21]. Using the

properties of the polylogarithm, or just inspecting the sum
in Eq. (5), we see that for p � 0, UðpÞ is an increasing
function of p and a decreasing function of �. It also has a
branch point at p ¼ 0. In the thermodynamic limit L ! 1,
the most negative singularity of QðpÞ is given by p	 ¼
Fð�Þ as this sets the radius of convergence of the sum in
Eq. (3). The singularity can stem either from setting the
denominator of Eq. (4) to zero, or from the branch point of
UðpÞ, i.e.,

ðaÞUðp	Þ ¼ e�� or ðbÞp	 ¼ 0 (6)

The solution of (a) corresponds to the state with zero
magnetization (no condensate) while (b) corresponds to
the magnetic state. At high enough temperatures for which
�~c < 1 the sum Uð0Þ ¼ P

l��~c diverges and a solution
of type (a), with p	 < 0, exists. The solution p	 increases
with increasing � and at the critical point �c, for which
c ¼ �c~c > 1 and, hence, Uð0Þ<1, p	 vanishes. It stays
zero at all temperatures below Tc. Thus �c is a singular
point of the free energy Fð�Þ ¼ p	. The freezing of the
thermodynamic pressure p	 below Tc is mathematically
similar to the freezing of the fugacity in Bose-Einstein
condensation for free bosons [22].
We next proceed to show that there is a diverging length

scale. Above the transition the probability to have a domain
of size l is given by

PðlÞ ’ ZðL� lÞyl��~c

ZðLÞ ’ y
e�l=�

l�~c
; (7)

where we have used the fact that ZðLÞ ’ e��p	L, and
defined � ¼ �ð�p	Þ�1. The length scale � can be regarded
as a correlation length, and it diverges at the transition (for
any c) as p	 ! 0. Expanding Eq. (6) (a) near the transition,

it can be shown that ð�p	Þminðc�1;1Þ � ðT � TcÞ. Hence we
deduce that ��ðT�TcÞ�� with � ¼ max½ð1=ðc� 1ÞÞ; 1
,
demonstrating the algebraic divergence of the correlation
length for all c > 1.
The average density of domains is given by the usual

relation hni ¼ �ð@p	=@�Þ. From this it is easy to see that
at the low temperature phase hni ¼ 0 since p	 ¼ 0 regard-
less of �. As hni � hli ¼ 1 this implies that hli ¼ 1 for
T < Tc. At the transition, where the correlation length �
diverges, the average domain length is given by hli ¼P

llPðlÞ ¼
P

l�cþ1 and, hence, it is finite if c > 2 and
infinite if 1< c � 2. This implies that hni drops continu-
ously to 0 if 1< c � 2 and discontinuously if c > 2.
Finally we wish to show that the magnetization jumps at

Tc from 0 to �1 for all c > 1. At zero magnetic field the
system has spin reversal symmetry and, hence, as long as
the symmetry is not spontaneously broken (i.e., at the high
temperature phase) the magnetization is 0. The low tem-
perature phase is characterized by a condensate, as was
argued by the similarity to Bose-Einstein condensation and
also as hni ¼ 0; i.e., there is essentially a single macro-
scopic domain (plus maybe a subextensive number of
microscopic domains). As the condensate is either of
type þ1 or �1, we find hmi ¼ �1. This demonstrates
the features of the phase diagram shown in Fig. 1.
We now consider the finite magnetic field case. The

analysis of the transition in this case follows essentially
the same steps as for the zero magnetic field case, with
Eq. (6) replaced by

ðaÞUðp	 þ hÞUðp	 � hÞ ¼ e2�� or ðbÞp	 ¼ �jhj:
(8)
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At finite h, the magnetization m ¼ �ð@p	=@hÞ is nonzero
even in the high temperature phase. For 1< c � 2 it is
continuous at Tc and the transition is an ordinary second
order transition. For c > 2, hmi is discontinuous at Tc and
the transition is of mixed nature as depicted in Fig. 2(a).

It is instructive to consider the RG flow of the model and
compare it with that of the IDSI model. This provides a
common analytical framework for both models and helps
elucidating the mechanism behind their distinct features.
The RG flow of the IDSI model was studied first by
Anderson et al. [16–18] using scaling arguments and
then more systematically by Cardy [19] and was shown
to be of the Kosterlitz-Thouless type [23]. In particular the
transition is characterized by a length that diverges as

exp½ðT � TcÞ�1=2
. We show below that in our model the
RG equations are of different form, yielding a correlation
length that diverges with a power law. To proceed we
consider a continuous version of the model, which captures
the long wavelength behavior of the original model: we
represent the domain boundaries (the kinks) as particles
with impenetrable core of size a, placed on a circle at
positions frigNi¼1, whereby, following Eq. (1), every pair of
nearest neighbor particles i and iþ1 attract each other log-
arithmically through a two body potential ~c logðriþ1 � riÞ.
The number of particles is not conserved, as the number
of kinks in the spin representation fluctuates, and it is
controlled by a fugacity y (equivalent to e��� above).
The partition function is thus

Z ¼ X1
N¼0

yN
Z YN

i¼1

dri
a

�
riþ1 � ri

a

���~c
�ðriþ1 � ri � aÞ;

(9)

where � is the Heaviside step function. Assuming a small
density of particles (y � 1), the renormalization procedure
proceeds by rescaling the core size of the particle a ! ae�,
as in Ref. [19]. The resulting flow equations in terms of the
fugacity y and the scaled interaction strength x ¼ 1� �~c
read

dy

d�
¼ xyþ y2;

dx

d�
¼ 0: (10)

The xy term in Eq. (10) compensates for the change in the

a�ðN�N�~cÞ factor in Eq. (9), and is the same as in the analysis
of the IDSI model [19]. The second term (y2) is the result of
expanding the� function as�ðriþ1�ri�ae�Þ��ðriþ1�
ri�aÞ�a�	ðriþ1�ri�aÞ. Physically the second term of
this expansion corresponds to the merging of two kinks due
to the rescaling procedure, and, hence, it results in the y2

term. As these are the only effects of the scale transforma-
tion, x remains invariant under it. The resulting flow dia-
gram is presented in Fig. 3(a). In this flow there is a line of
unstable fixed points for y ¼ �x each corresponding to a
different value of c. A similar flow diagram has previously

been found for the one-dimensional discrete Gaussian
model with 1=r2 coupling [24,25].
Equation (10) can be compared with the RG equations

for the IDSI model, which are the same as those of the XY
model (under proper rescaling of parameters) [19,23]

dy

d�
¼ xy;

dx

d�
¼ y2: (11)

Notice that in this case the merging of two kinks produces
a dipole interaction, and, hence, the y2 term renormalizes
the interaction strength x. The renormalization flow of
this model is presented in Fig. 3(b). It has only a single
unstable fixed point for x ¼ y ¼ 0 in the relevant x � 0
regime.
One can calculate the temperature dependence of the cor-

relation length of the truncatedmodel by linearizing Eq. (10)

near the fixed points. The result is ��½ðT�TcÞ=jxj
1=x,
which is the same as that found above for c � 2.
In conclusion, we have presented and analyzed a novel

one-dimensional Ising model that displays a spontaneous
symmetry breaking transition with diverging correlation
length and an extreme Thouless effect, i.e., a discontinuous
jump in magnetization (from 0 to�1). The model conven-
iently connects two widely studied classes of models, the
Poland-Scheraga model and the IDSI. In addition to the
magnetization we have identified another order parameter,
the density of domains n, and have shown that it is either
continuous or discontinuous at Tc depending on whether
c � 2 or c > 2, respectively. This order parameter has not
been discussed in the context of the IDSI model, and it
would be interesting to explore its behavior in that case.
We also showed that the model exhibits mixed transitions
for nonzero magnetic field, unlike the IDSI model, and,
hence, it does not fall into the classification of first order
transition points appearing in Ref. [14]. We have also used
a RG picture to explain the power law divergence of the
correlation length in this model, in contrast to the essential
singularity behavior of the correlation length in the IDSI
model. It would be interesting to extend the present study
to Potts type models and to consider the effect of disorder
on the nature of the transition.

−0.1 0 0.1

0

0.05

0.1

x x

y

(a)

−0.1 0 0.1

0

0.05

0.1

y

(b)

FIG. 3 (color online). RG flow for (a) the truncated model
[Eq. (10)], and (b) the IDSI model (or XY model) [Eq. (11)].
Solid lines indicate attractive fixed points, unstable fixed points
are marked by dashed-dotted lines, and the dashed line in (b) is a
separatrix.
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