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Using continuous-space quantum Monte Carlo methods, we investigate the zero-temperature ferromag-
netic behavior of a two-component repulsive Fermi gas under the influence of periodic potentials that
describe the effect of a simple-cubic optical lattice. Simulations are performed with balanced and with
imbalanced components, including the case of a single impurity immersed in a polarized Fermi sea
(repulsive polaron). For an intermediate density below half filling, we locate the transitions between
the paramagnetic, and the partially and fully ferromagnetic phases. As the intensity of the optical lattice
increases, the ferromagnetic instability takes place at weaker interactions, indicating a possible route to
observe ferromagnetism in experiments performed with ultracold atoms. We compare our findings with
previous predictions based on the standard computational method used in material science, namely density
functional theory, and with results based on tight-binding models.
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Itinerant ferromagnetism, which occurs in transition
metals like nickel, cobalt, and iron, is an intriguing quan-
tum mechanical phenomenon due to strong correlations
between delocalized electrons. The theoretical tools
allowing us to perform ab initio simulations of the complex
electronic structure of solid state systems, the most impor-
tant being density functional theory (DFT) [1,2], give sys-
tematically reliable results only for simple metals and
semiconductors. The extension to strongly correlated mate-
rials still represents an outstanding open challenge [3]. Our
understanding of quantum magnetism is mostly based on
simplified model Hamiltonians designed to capture the
essential phenomenology of real materials. The first model
introduced to explain itinerant ferromagnetism is the Stoner
Hamiltonian [4], which describes a Fermi gas in a con-
tinuum with short-range repulsive interactions originally
treated at the mean-field level. The Hubbard model,
describing electrons hopping between sites of a discrete
lattice with on-site repulsion, was also originally introduced
to explain itinerant ferromagnetism in transition metals [5].
Despite the simplicity of these models, their zero-
temperature ferromagnetic behavior is still uncertain.
In recent years, ultracold atoms have emerged as the

ideal experimental system to investigate intriguing
quantum phenomena caused by strong correlations.
Experimentalists are able to manipulate interparticle inter-
actions and external periodic potentials independently,
allowing the realization of model Hamiltonians relevant
for condensed matter physics [6], or to test exchange-
correlation functionals used in DFT simulations of materials
[7]. Indirect evidence consistent with itinerant (Stoner)

ferromagnetism was observed in a gas of 6Li atoms [8] when
the strength of the repulsive interatomic interaction was
increased following the upper branch of a Feshbach reso-
nance. However, subsequent theoretical [9] and experimental
studies [10,11] have demonstrated that three-body recombi-
nations are overwhelming in this regime, and an unambigu-
ous experimental proof of ferromagnetic behavior in atomic
gases is still missing. Proposed modifications of the exper-
imental setup that should favor the reach of the ferromag-
netic instability include: the use of narrow Feshbach
resonances [12,13], of mass-imbalanced binary mixtures
[14,15], reducing the effective dimensionality with strong
confinements [16–19], and adding optical [7] and optical-
flux lattices [20].
In this Letter, we use a continuous-space quantum

Monte Carlo (QMC) method to investigate ferromagnetism
of a 3D two-component Fermi gas with short-range repul-
sive interspecies interactions in the presence of a simple-
cubic optical lattice. At 3=8 filling (a density of 3=4 atoms
per lattice site) we obtain the zero-temperature phase dia-
gram as a function of interaction strength and the amplitude
V0 of the optical lattice focusing on three phases: paramag-
net, partially polarized ferromagnet, and fully polarized
ferromagnet. We do not consider spin-textured [21] and
antiferromagnetic phases [7,22], nor the Kohn-Luttinger
superfluid instability.
Performing simulations in continuous space with an

external periodic potential, rather than employing single-
band discrete lattice models (valid only in deep lattices),
allows us to address also the regime of small V0 and to
determine the shift of the ferromagnetic transition with
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respect to the homogeneous gas (corresponding to V0 ¼ 0)
[21,23–25]. We consider weak and moderately intense opti-
cal lattices, where the noninteracting band-gap is small or
zero. We find that the critical interaction strength for the
transition between the paramagnetic and the partially ferro-
magnetic phases (blue circles in Fig. 1), as well as the
boundary between the partially and fully polarized ferro-
magnetic phases (black squares), rapidly decreases when
V0 increases. These results strongly support the idea of
observing itinerant ferromagnetism in experiments with
repulsive gases in shallow optical lattices [26]. A similar
enlargement of the ferromagnetic stability region was
obtained by means of DFT simulations based on the
Kohn-Sham equations [27] with an exchange-correlation
functional obtained within the local spin-density approxi-
mation [7,28]. At large lattice depths and interaction
strengths, however, we observe quantitative discrepancies
between QMC calculations and DFT due to the strong cor-
relations which are only approximately taken into account
in DFT methods. This regime, therefore, represents an ideal
test bed to develop more accurate exchange-correlation
functionals for strongly correlated materials.
This scenario appears to be in contrast with the findings

obtained for the single-band Hubbard model, valid for deep
lattices and weak interactions, where QMC simulations
indicate that the ground-state is paramagnetic [29] (at least
up to filling factor 1=4) and stable ferromagnetism has been
found only in the case of infinite on-site repulsion [30–32].
Since at large optical lattice intensity and weak interactions
our results agree with Hubbard model simulations (see
Supplemental Material [36]), these findings concerning
the ferromagnetic transition indicate that the Hubbard

model is not an appropriate description for the strongly
repulsive Fermi gas in moderately deep optical lattices
and that terms beyond on-site repulsion and nearest neigh-
bor hopping play an essential role. It also suggests that
the possibility of independently tuning interparticle
interactions and spatial inhomogeneity, offered by our
continuous-space Hamiltonian, is an important ingredient
in explaining itinerant ferromagnetism.
We investigate the ground-state properties of the

Hamiltonian

H ¼
X

σ¼↑;↓

XNσ

iσ¼1

½−Λ∇2
iσ
þ VðriσÞ� þ

X

i↑;i↓

vðri↑i↓Þ; (1)

where Λ ¼ ℏ2=2m, with the atoms’ mass m and the
reduced Planck constant ℏ. The indices i↑ and i↓ label
atoms of the two species, which we refer to as spin-up and
spin-down fermions, respectively. The total number of
fermions is N ¼ N↑ þ N↓, and ri↑i↓ ¼ jri↑ − ri↓ j. VðrÞ ¼
V0

P
α¼x;y;zsin

2ðαπ=dÞ is a simple-cubic optical lattice
potential with periodicity d and intensity V0, convention-
ally expressed in units of recoil energy ER ¼ Λðπ=dÞ2.
vðrÞ is a short-range model repulsive potential. Its intensity
is parametrized by the s-wave scattering length a, which
can be tuned experimentally using Feshbach resonances
[33]. Off-resonant intraspecies interactions in dilute atomic
clouds are negligible since p-wave collisions are sup-
pressed at low temperature; hence, we do not include them
in the Hamiltonian.
We perform simulations of the ground state of the

Hamiltonian (1) using the fixed-node diffusion
Monte Carlo (DMC) method. The DMC algorithm allows
us to sample the lowest-energy wave function by stochas-
tically evolving the Schrödinger equation in imaginary time.
To circumvent the sign problem, the fixed-node constraint is
imposed, meaning that the many-body nodal surface is fixed
to be the same as that of a trial wave function ψT . This varia-
tional method provides the exact ground-state energy if the
exact nodal surface is known, and in general the energies are
rigorous upper bounds which are very close to the true
ground state if the nodes of ψT accurately approximate
the ground-state nodal surface (see, e.g., [34,35] and the
SupplementalMaterial [36] for more details). Our trial wave
function is of the Jastrow-Slater form

ψTðRÞ ¼ D↑ðN↑ÞD↓ðN↓Þ
Y

i↑;i↓

fðri↑i↓Þ; (2)

where R ¼ ðr1;…; rNÞ is the spatial configuration vector
and D↑ð↓Þ denotes the Slater determinant of single-particle
orbitals of the particles with up (down) spin. The orbitals are
constructed by solving the single-particle problem in a box
of size L with periodic boundary conditions, with and
without an optical lattice, obtaining Bloch wave functions
and plane waves, respectively. We employ the N↑ð↓Þ
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FIG. 1 (color online). Zero-temperature phase diagram at den-
sity nd3 ¼ 0.75, as a function of the interactions strength a=d and
the optical lattice intensity V0=ER. The blue circles separate the
region of stability of the paramagnetic phase (green) from the
partially polarized ferromagnetic phase (yellow). The black
squares separate the partially polarized from the fully polarized
ferromagnetic phase (red). The violet triangles and the brown
dashed line are the corresponding DFT results. Black and blue
lines are guides to the eye.
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lowest-energy (real-valued) orbitals for the up (down) spins.
For homogeneous Fermi gases the accuracy of the Jastrow-
Slater form was verified in Ref. [24] by including backflow
correlations, and we have performed preliminary simula-
tions with generalized Pfaffian wave functions [37], finding
no significative energy reduction. In simulations of the
ferromagnetic transition of the infinite-U Hubbard model,
fixed-node results were compared against exact released-
node simulations [38] finding excellent agreement.
Furthermore, at large V0=ER and small a=d [where our con-
tinuous-space Hamiltonian (1) can be approximated by the
Hubbard model] our results precisely agree with those of
Ref. [29] (see [36]). These comparisons give us confidence
that the choice of ψT in (2) accurately estimates the ground-
state energy. The Jastrow correlation term fðrÞ is obtained
by solving the two-body scattering problem in free space
with the potential vðrÞ and imposing the boundary condition
on its derivative f0ðr ¼ L=2Þ ¼ 0. With this choice the cusp
condition is satisfied. Since fðrÞ > 0, the many-body nodal
surface results only from the antisymmetric character of the
Slater determinants. We simulate systems of different sizes,
up to L ¼ 6d including N ¼ 162 fermions, and find that
finite-size effects are below statistical error bars if one sub-
tracts the finite-size correction of noninteracting fermions
E0ðN↑; N↓Þ − ETL

0 ðPÞ, where ETL
0 ðPÞ is the ideal-gas

ground-state energy in the thermodynamic limit (TL) at
the polarization P ¼ ðN↑ − N↓Þ=ðN↑ þ N↓Þ [39].
To model the interspecies interaction, we use prevalently

the hard-sphere potential (HS): vðrÞ ¼ þ∞ if r < R0 and
zero otherwise. At zero temperature, the properties of a
dilute homogeneous gas are universal and depend only
on the two-body scattering properties at zero energy.
These properties are fixed by the s-wave scattering length
a. For the HS model, one has a ¼ R0. As a increases, other
details of the potential might become relevant, the most
important being the effective range reff and the p-wave
scattering length ap [40], which characterize scattering
at low but finite energy [41]. For homogeneous systems,
a detailed analysis of the nonuniversal effects was per-
formed in Refs. [23–25]. Various models with different val-
ues of reff and ap were considered, including resonant
attractive potentials designed to mimic broad Feshbach res-
onances with reff ≪ n−1=3 (n ¼ N=L3 is the density) [33].
In this Letter, we consider the limited interaction regime
kFa≲ 1 [kF ¼ ð3π2nÞ1=3 is the Fermi wave vector], where
differences in the equations of state were found to be
marginal (see Fig. 2, lower dataset). In the presence of
an optical lattice, the single-particle band structure further
complicates the two-body scattering process. To analyze
nonuniversal effects in this situation, we compare the
many-body ground-state energies in optical lattices
obtained using three model potentials with the same
s-wave scattering length: the HS model; the soft-sphere
potential (SS), vðrÞ ¼ vSS if r < R0 and zero otherwise,
with R0 ¼ 2a [42]; the negative-power potential (NP)

vðrÞ ¼ vNP=r9 [43]. In Fig. 2 (upper dataset), we show
results for an optical lattice with intensity V0 ¼ 3ER.
Nonuniversal corrections are found to be below statistical
error-bars up to values of the interaction parameter where
ferromagnetic behavior occurs (see below). In the follow-
ing, we use the HS model and parametrize the interaction
strength with the parameters kFa and a=d, in free space and
in optical lattices, respectively. The latter can be compared
with the former if one defines kF with the average density
in the optical lattice.
Many theoretical studies of atomic gases in optical lat-

tices have instead adopted discrete lattice models within a
single-band approximation and with on-site interactions
only. The on-site interaction parameter is usually deter-
mined without considering the strong virtual excitations
to higher Bloch bands which are induced by short-ranged
potentials [45]. This approximation is reliable only if
V0 ≫ ER and a ≪ d [46]. In the regime considered in this
Letter, higher-band processes are important and they can
have a strong impact on the properties of discrete-lattice
models [47]. Reference [45] introduced a different pro-
cedure to determine the on-site Hubbard interaction param-
eter which is valid at low filling and effectively takes into
account the role of higher bands.
To determine the onset of ferromagnetism using QMC

calculations, we perform simulations of population-
imbalanced configurations. In Fig. 3, we plot the energy
as a function of polarization P for fixed lattice depth
V0 ¼ 2ER and density nd3 ¼ 0.75 at different interaction
strengths. The minimum of the curve EðPÞ indicates
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FIG. 2 (color online). Ground-state energy in an optical lattice
(upper dataset with full symbols, left and upper blue axes) and in
free space (empty symbols, lower and right red axes). Three inter-
atomic potentials are considered: hard spheres (HS, blue and red
squares), soft spheres (SS, black circles), and negative power
(NP, green triangles). The ranges of interaction strength in the
upper and lower x axes coincide if one defines kF ¼ ð3π2nÞ1=3
with the average density n in the optical lattice. The horizontal
segments indicate the energies of the fully polarized phases.
The thick red curve is the ladder approximation theory for a
zero-range pseudopotential [25].
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the equilibrium polarization of ferromagnetic domains. At
the weakest interaction, the minimum is at P ¼ 0, so the
system is paramagnetic. For larger a=d, we observe
minima at finite P, allowing us to estimate the critical
interaction strength where the transition to the partially
ferromagnetic phase takes place. We do not investigate here
the order of the transition. Our results are compatible with
different scenarios which have been proposed: weakly
first-order [48], second-order [25], or infinite-order [38]
transitions. A similar analysis at different optical lattice
intensities shows that the critical interaction strength
rapidly diminishes as V0 increases (see blue bullets in
Fig. 1), meaning that the optical lattice strongly favors
ferromagnetism.
The critical interaction strength between the partially and

the fully polarized phases is found by considering the prob-
lem of the repulsive Fermi polaron, i.e., a single impurity,
say a spin-down particle, immersed in a fully polarized gas
of spin-up particles. In Fig. 4, we show the polaron chemi-
cal potential A, i.e., the energy of the gas with the impurity
minus the energy of the spin-up particles alone, as a func-
tion of the interaction strength. We compare results
obtained in a V0 ¼ 2ER optical lattice (blue squares), with
the homogeneous case V0 ¼ 0 (red circles, from Ref. [23]).
In the region where A is larger than the chemical potential
of the majority component (horizontal segments in Fig. 4),
the fully polarized phase is stable. By repeating a similar
analysis for different values of V0, the phase boundary
between the two phases (black squares in Fig. 1) is
obtained.
In conclusion, we have calculated, using QMC methods,

the ground-state energy of repulsive Fermi gases in optical
lattices as a function of population imbalance, obtaining the
critical interaction strength for the onset of ferromagnetic
behavior. From simulations of the repulsive polaron, we
determined the region of stability of the fully polarized

phase. Of particular interest is the question of how effective
strongly correlated single-band models emerge from the
continuum description. In the context of the Mott insulator
transition in bosonic systems, lattice models with only on-
site interaction have been compared against continuous-
space simulations, finding for V0 ≳ 4ER only quantitative
differences [49]. However, in the regime of intermediate
values of V0 and strong interactions considered in this
Letter, additional terms such as density-induced tunneling
and interaction-induced higher band processes are impor-
tant, and they can induce qualitative changes in the proper-
ties of tight binding models [47,50,51], in particular,
concerning the ferromagnetic behavior [52]. These effects
are naturally taken into account in a continuous-space
description, and our results confirm that they play a role
in itinerant ferromagnets.
While in shallow lattices there is good agreement

between QMC and Kohn-Sham local spin-density approxi-
mation, the regime of deep lattices and strong interactions
represents a new test bed to develop more accurate
exchange-correlation functionals, which is an outstanding
open challenge in material science [3]. Furthermore, our
results show that moderately intense optical lattices are
favorable for experimental realization of ferromagnetism,
also due to a faster thermalization rate compared to
very deep lattices. In a recent experiment short-range
antiferromagnetic correlations have been observed at
half-filling [53].
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