
Spinodal Decomposition in Homogeneous and Isotropic Turbulence

Prasad Perlekar,1,2 Roberto Benzi,3 Herman J. H. Clercx,1 David R. Nelson,4 and Federico Toschi1,5,6
1Department of Physics and J.M. Burgerscentrum, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands;

and International Collaboration for Turbulence Research
2TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India

3 Dipartimento di Fisica and INFN, Università “Tor Vergata”, Via della Ricerca Scientifica 1, I-00133 Roma, Italy
4Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

5Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
6CNR, Istituto per le Applicazioni del Calcolo, Via dei Taurini 19, 00185 Rome, Italy

(Received 27 June 2013; published 8 January 2014)

We study the competition between domain coarsening in a symmetric binary mixture below critical
temperature and turbulent fluctuations. We find that the coarsening process is arrested in the presence
of turbulence. The physics of the process shares remarkable similarities with the behavior of diluted tur-
bulent emulsions and the arrest length scale can be estimated with an argument similar to the one proposed
by Kolmogorov and Hinze for the maximal stability diameter of droplets in turbulence. Although, in the
absence of flow, the microscopic diffusion constant is negative, turbulence does effectively arrest the
inverse cascade of concentration fluctuations by making the low wavelength diffusion constant positive
for scales above the Hinze length.
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Turbulence is known to strongly increase mixing
efficiency. The enhanced mixing properties of turbulence
arise due to its multitime and multiscale correlated velocity
fluctuations and can be understood in terms of a phenom-
enological, and scale-dependent, eddy viscosity νtðlÞ ∼
νðl=ηÞ4=3 (η is the Kolmogorov dissipative scale at which
velocity fluctuations are dissipated [1]). At larger inertial
length scales, l > η, the effective diffusivity νt ≫ ν where
ν is the kinematic viscosity of the quiescent fluid.
A binary liquid mixture cooled below its critical

temperature undergoes a phase transition and the mixture
separates into phases enriched with its two components.
This phenomenon is known as spinodal decomposition
[2]. The dynamics of the phase separation can be under-
stood in terms of incompressible Navier-Stokes equations
coupled to Cahn-Hilliard or model-B equations describing
the binary mixture order parameter (in the absence of tur-
bulence) [3,4]. Using dimensional estimates, the evolution
of the phase separation can be divided into three regimes:
(a) In the initial state, the coarsening length scale of the
phase separating binary mixture grows as t1=3 (Lifshitz-
Slyozov scaling, [5]). This corresponds to growth domi-
nated by the binary mixture diffusivity and is associated
with the evaporation of small droplets at the expense of
larger growing ones. (b) At intermediate times, when fluid
motion becomes important, viscous dissipation of the fluid
balances the pressure (ν∇2u ∼∇p) which leads to a linear
increase ∼t in the coarsening length (viscous scaling, [6]).
(c) At final stages, the coarsening length scale grows as t2=3

and is governed by the balance of fluid advection with the
variations in chemical potential (ρu · ∇u ∼∇μ) (inertial
scaling, [7]). This evolution of the coarsening process

has been verified in earlier numerical [8–12] and experi-
mental studies [13].
In this Letter, we study the competition between incom-

pressible turbulence and the coarsening, which leads to a
dynamically active statistically steady state [14].
Turbulence twists, folds, and breaks interfaces into smaller
domains whereas coarsening leads to domain growth. We
show, here, that turbulence leads to an arrest of the coars-
ening length (see Fig. 1). We present state-of-the-art high-
resolution numerical simulations of a symmetric liquid
binary mixture in three dimensions in the presence of exter-
nal turbulent forcing. Our simulations show that the com-
petition between breakup due to turbulence and coagulation
due to spinodal decomposition leads to coarsening arrest.
We show that the coarsening length scale can be estimated
in terms of the Hinze criterion for droplet breakup [15,16]
pointing at a common physics behind the processes.
Finally, we show that the back reaction of the binary mix-
ture dynamics on the fluid leads to an alteration of the
energy cascade.
Early experiments [17,18] used light scattering to inves-

tigate the coarsening arrest in high-Schmidt number
(Sc≡ ν=D) mixtures where D is the diffusivity of the
binary mixture. These results were later understood by
invoking the idea of scale dependent eddy diffusivity
[19,20]. There it was argued that the coarsening would pro-
ceed inside the viscous-convective range [21] where the
fluid viscosity is important, but the diffusivity of the binary
mixture can be ignored. More recent numerical simulations
in two-dimensions have studied the effect of chaotic or ran-
dom velocity fields on the Cahn-Hilliard equation and
found that the coarsening is indeed arrested [22–24].
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Here, the coarsening length is determined by the balance of
the advection of the binary-mixture concentration with gra-
dients in the chemical potential. In Ref. [25], were reported
numerical simulations of fully coupled Navier-Stokes and
Cahn-Hilliard equations (at Sc ¼ 0.1) with externally
forced turbulence in two dimensions in the inverse cascade
regime. It was shown that the coarsening length varies as
u−0.41rms , where urms is the root-mean-square velocity.
In this Letter, we study coarsening arrest in three dimen-

sions using state of the art numerical simulations [16,26].
To simulate binary mixtures we use a two-component
Lattice-Boltzmann method [26]. The interaction between
the components are introduced using the Shan-Chen

algorithm [26]. Turbulence is generated by using a large-
scale sinusoidal forcing along the three directions. All wave
modes whose magnitude is less than

ffiffiffi
2

p
are active and the

phases are chosen to be independent Ornstein-Uhlenbeck
processes [16].
For all our simulations, we used initial conditions with

densities ρð1Þ and ρð2Þ such that the corresponding initial
order parameter field ϕ≡ ðρð2Þ − ρð1ÞÞ=ðρð2Þ þ ρð1ÞÞ is a
random distribution of þ1 and −1. For simulations with
turbulence, the forcing was also switched on at the initial
time. We simulate in a cubic domain with periodic boun-
dary conditions on all sides. Table I lists the parameters
used in our simulations.

FIG. 1 (color online). Pseudocolor plots of the concentration fields, with the two symmetric fluids indicated in red and blue. (Top
panel, left–right) Time evolution of the concentration field undergoing coarsening process from an initially well-mixed state. Notice the
formation of ever-larger concentration patches as the time evolves. (Middle panel, left–right) Time evolution of the concentration field
undergoing a coarsening process from a well-mixed state in the presence of turbulence generated by external driving. The coarsening
process goes on uninhibited until arrested by the turbulence at later times. (Bottom panel, left–right) Time evolution of a very coarse
phase-separated mixture in the presence of turbulence with the same intensity as the middle panel. In this case, the domains are broken
up until the mixture attains a steady state domain size that is the same as the one in the middle panel. This behavior indicates a positive
renormalized eddy diffusivity at large length scales even though the microscopic diffusion constant is negative. The Taylor-microscale
Reynolds number for the middle and bottom panels is Reλ ¼ 103 (run ST2, Table I). From the plots, it is clear that, in case of turbulence,
the coarsening of concentration gets arrested whereas coarsening length attains domain size in the absence of turbulence. In all the
panels, the snapshots are taken at times t ¼ 5.0 × 103, 1.0 × 104, 2.5 × 104, and 1.0 × 105.
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We first investigate how the coarsening proceeds in
absence of turbulence in the viscous scaling regime (runs
S1–S3). As a definition of the coarsening length scale LðtÞ,
we use LðtÞ ¼ 2π=½k1ðtÞ�, with k1ðtÞ ¼ ðPkkSkÞ=ð

P
kSkÞ,

and Sk ¼ ðP0
k jφkj2Þ=ð

P0
k 1Þ. Here ϕk is the Fourier trans-

form of φ, Sk is the shell-averaged concentration spectrum
normalized by the corresponding density of states. For the
sake of brevity we will call Sk the concentration spectrum.
Finally, k ¼ ffiffiffiffiffiffiffiffiffi

k · k
p

, and
P0 indicates the summation over

all the modes k ∈ ½k − 1=2; kþ 1=2�. Below the critical
point, phase separation leads to an LðtÞ that grows
with time.
For our runs S1–S3, as expected [6], we observe LðtÞ ∼ t

[Fig. 2, (red dots)].
We now study the effect of turbulence on coarsening.

We force large length scales to generate homogeneous, iso-
tropic turbulence in the velocity field. In what follows, we
study the effect of turbulence in the viscous scaling regime.
Note that Sc ¼ ν=jDj ∼Oð1Þ in our simulations, whereas
for most liquid binary mixtures Sc ≫ 1, which requires the
resolution of both the inertial and the viscous-convective
scales to be much higher than what is attained in the present
investigation.
Figure 2 shows how LðtÞ increases in the presence of

turbulence. Instead of coarsening until LðtÞ reaches the size
of the simulation domain, turbulence arrests the inverse
cascade of concentration fluctuations, blocks coarsening,
and leads to a steady state length where the domains con-
stantly undergo coalescence and breakup. The saturating

coarsening length L∞ decreases with increasing turbulence
intensity.
In an earlier study [16], we had shown that, for asym-

metric binary mixtures, the Hinze criterion provides an esti-
mate for the average droplet diameter undergoing breakup
and coalescence in turbulence. We now show that even for
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FIG. 2 (color online). Coarsening arrest for phase separating
binary mixtures in the presence of turbulence. In the absence
of an external turbulent forcing (red circles), the coarsening
length keeps on growing as LðtÞ ∼ t (black line). Switching on
turbulence, the coarsening length initially grows undisturbed,
but then, it arrests as the system attains a steady state. The time
and length scale are nondimensionalized by the corresponding
characteristic length L0 ¼ ν2=ðρσÞ and time T0 ¼ ν3=ðρσ2Þ.
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FIG. 3 (color online). Growth of the coarsening length scale
LðtÞ in the arrested state normalized by the Hinze length LH
for Reλ ¼ 35, 49 (blue three-quarter-filled circle and green
half-filled circle) [run ST1], Reλ ¼ 72, 103 (purple square and
brown filled square) [run ST2], and Reλ ¼ 86 (blue filled circle)
[run ST4]. In the inset, we plot the average value of LðtÞ=LH ,
calculated over the time window t ¼ 5 × 104 to 2 × 105, for dif-
ferent Reynolds numbers Reλ. Within error bars, LðtÞ=LH ≈
4.4� 0.5 is found to be a good indicator for the arrested length
scale. We believe that the smaller value of LðtÞ=LH (although
within our error bars) for the Reλ ¼ 35, 49 arises because of
the lower grid resolution.

TABLE I. The parameters of our simulations. Runs S1–S3
explore spinodal decomposition in the absence of an external
forcing, while ST1–ST4 simulate spinodal decomposition in
the presence of external driving that generates turbulence.
For comparing a turbulent binary mixture with the standard,
single-component turbulent fluid (i.e., symmetric binary
mixture above its critical point, without surface tension), we
also conducted runs NS1 and NS2. The total density of the
binary mixture is ρ ¼ ρð1Þ þ ρð2Þ. For all the runs, the
kinematic viscosity ν ¼ 5 × 10−3. For runs S1–S3, ST1–3,
surface tension σ ¼ 1.6 × 10−3, and the Schmidt number
Sc ¼ 1.47 whereas, for the run ST4, σ ¼ 1.7 × 10−3, and
Sc ¼ 3.72. The Taylor scale Reynolds number is
Reλ ≡

ffiffiffiffiffi
10

p
E=ð ffiffiffiffiffi

ϵν
p Þ. Here E is the kinetic energy of the fluid

and ϵ is the energy dissipation rate.

Runs Domain size ρ Reλ

S1 1283 2.4 NA
S2 2563 2.4 NA
S3 2563 1.1 NA
ST1 1283 2.4 35,49
ST2 2563 2.4 72,103
ST3 5123 2.4 103,162,185
ST4 2563 1.1 86
NS1 2563 2.4 103
NS2 5123 2.4 162
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50%–50% binary mixtures, the Hinze criterion gives a
good estimate for the coarsening length scale L∞ at
long times.
According to the prediction of Ref. [15], the maximum

droplet diameter that can be stable to turbulent velocity
fluctuations in the steady state should be given by the
Hinze length

LH ≈
�
ρ

σ

�−3=5
ϵ−2=5. (1)

Actually, the above equation is also consistent with the pre-
dictions of Ref. [27]. A general criteria for the coarsening
length is given by the relation LðtÞ ¼ L0fðxÞ with x ¼
t=T0 [27]. The function fðxÞ satisfies the two limiting scal-
ing fðxÞ ∼ x for small x and fðxÞ ∼ x2=3 for large x. In tur-
bulent flow, the relevant time scale is given by L=δvðLÞ

where δvðLÞ is the size of the velocity fluctuation at
the scale L. Since this time scale is much longer than
t, the appropriate scaling behavior for fðxÞ is x2=3.
Using the inertial scaling, we again obtain Eq. (1). The
above argument may not apply to shear flows, due to
nonisotropic contributions and strong dissipation at the
boundaries, and in two dimensional flows where the char-
acteristic time scale is dictated by enstrophy cascade.
In [16,28], it was shown that in the presence of coagu-

lation-breakup processes the correct quantity to look at is
the average droplet diameter L∞ ≡ hLðtÞi in the sta-
tistically stationary state. Therefore, we expect that the ratio
LðtÞ=LH stays constant in all our simulations. The plot in
Fig. 3 shows the plot of LðtÞ=LH for our runs.
The blockage of the energy transfer by turbulence is best

understood in Fourier space. The plots in Fig. 4 compare
the concentration spectrum k2Sk at various times t ¼ 103,
104, and 105 in the absence (2563, ρ ¼ 2.4 [run S2]) and
presence (2563, ρ ¼ 2.4, and Reλ ¼ 103 [run ST2]) of
turbulence. Without turbulence, we observe a peak in the
concentration spectrum at initial times that moves towards
smaller wave vectors until it reaches the domain size.
On the other hand, in the presence of turbulence, the
concentration fluctuations saturate, and the concentration
spectrum reaches a steady state.
The presence of a surface tension should also alter the

transfer of energy in Fourier space. On the other hand,
in the regions of weak turbulence, local chemical potential
will transfer energy back to the fluid. In Fig. 5, we inves-
tigate how a phase separating binary liquid mixture velocity
spectrum compares with the pure fluid case. We observe
that in the inertial range the energy content of the binary
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FIG. 4 (color online). (Top panel) The inverse cascade of con-
centration spectrum k2SðkÞ for spinodal decomposition at times
t ¼ 103 − 5 × 105 (2563, ρ ¼ 2.4 [run S2]) without turbulence.
The Fourier mode associated with the peak of the spectrum
gives an estimate of the instantaneous coarsening length. On
the other hand, in the presence of turbulence (bottom panel,
f2563; ρ ¼ 2.4; andReλ ¼ 103½run ST2�g), we do observe an
initial inverse cascade of concentration that saturates around
t ¼ 5 × 104 indicating a blockage of the inverse cascade.
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FIG. 5 (color online). Comparison of the energy spectrum for
the spinodal decomposition in the presence of turbulence (tri-
angle, run ST3 [Reλ ¼ 185]) with the pure fluid case (circle,
run NS2). The black line indicates the Kolmogorov scaling
k−5=3. We find that the large-k crossover takes place roughly
around the inverse Hinze scale kH ≡ 1=LH . This crossover
was also confirmed by comparing runs NS1 and ST2 (not
shown here).
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mixture is strongly suppressed in comparison to the pure
fluid case, whereas in the dissipation range, the energy
content is higher for the binary mixture.
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