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We analyze the tumbling of small nonspherical, axisymmetric particles in random and turbulent flows.
We compute the orientational dynamics in terms of a perturbation expansion in the Kubo number, and
obtain the tumbling rate in terms of Lagrangian correlation functions. These capture preferential sampling
of the fluid gradients, which in turn can give rise to differences in the tumbling rates of disks and rods.
We show that this is a weak effect in Gaussian random flows. But in turbulent flows persistent regions of
high vorticity cause disks to tumble much faster than rods, as observed in direct numerical simulations
[S. Parsa, E. Calzavarini, F. Toschi, and G. A. Voth, Phys. Rev. Lett. 109, 134501 (2012)]. For larger par-
ticles (at finite Stokes numbers), rotational and translational inertia affects the tumbling rate and the angle at
which particles collide, due to the formation of rotational caustics.
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The orientational dynamics of axisymmetric particles
in random and turbulent flows is of great significance in
many areas of the natural sciences and in technology. For
example, turbulent flow visualization experiments employ
reflective flakes [1]. Patterns of nonspherical particles sus-
pended in flows were investigated in Refs. [2–4], revealing
singularities in the orientational patterns of rheoscopic
suspensions. Aerosols in the natural world are often
suspensions of small nonspherical particles. For example,
tumbling ice particles in turbulent cloudsmayplay an impor-
tant role in cloud-particle interactions [5]. Small dust grains
in circumstellar accretion disks are not spherically symmet-
ric [6,7]. The relative orientation atwhich such grains collide
mayhave important consequences for the outcomesof grain-
grain collisions, and their orientation may have important
implications for photophoretic forcing [8]. A last example
concerns plankton in the upper ocean layer. Their tumbling
may influence their nutrient uptake and light scattering [9].
In all of these cases the particles are smaller than the

smallest turbulent eddies in the suspending flow, and the
orientational dynamics of such small particles is driven
by the local flow gradients: the difference in flow velocity
over the particle leads to a hydrodynamic torque.
Understanding how small nonspherical particles respond
to flow gradients is a necessary step in describing the
collision dynamics of turbulent suspensions of axisymmet-
ric particles. Moreover, the orientational dynamics of small
nonspherical particles is of fundamental interest in turbu-
lence research, because it reflects the statistics of thevelocity
gradients in turbulent flows [10]. Recently, the tumbling
rate of small axisymmetric particles in turbulent flows

was investigated experimentally and by direct numerical
simulations [11]. It was found that disks tumble, on average,
at a much higher rate than rods. This was related to the
observation that rods tend to preferentially align with the
vorticity of the flow [10]. But disks too exhibit alignment
with flow structures; the equations of motion for disks and
rods are, in fact, almost the same. The only difference is
that the flow-gradient matrix for rods is replaced by its neg-
ative transpose for disks (explained in more detail below).
This raises the following questions: Which flow

configurations are responsible for the difference in tum-
bling between disks and rods? How do disks align?
How does the tumbling in turbulent flows differ from
that in random flows? How sensitive is the orientational
dynamics to particular features of turbulent flows? How
does the nature of the turbulent Lagrangian flow statistics
influence the tumbling? How does tumbling reflect
vorticity? Finally, what is the effect of particle inertia
upon the tumbling?
To answer these questions we analyze the tumbling of

small nonspherical particles in random and turbulent flows
using perturbation theory. In the simplest case our problem
is governed by three dimensionless parameters. The Kubo
number Ku ¼ u0τ=η is a dimensionless measure of the cor-
relation time of the flow; here u0, τ, and η are the smallest
characteristic speed, time, and length scales of the flow
(Kolmogorov scales in turbulence). The Stokes number
St characterizes the damping of the particle dynamics with
respect to the flow. The third parameter is the aspect ratio λ
of the axisymmetric particle.
In the limit of St → 0, the center-of-mass r is simply

advected. The orientational dynamics of the unit vector
n pointing along the symmetry axis of the particle is driven
by the local flow gradients (provided that the dimensions of
the particle are much smaller than η). In other words n
follows Jeffery’s equation [12]. We use dimensionless units
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t ¼ τt0, r ¼ ηr0, u ¼ u0u0. Dropping the primes, the equa-
tion of motion reads

r
: ¼ Kuu; n

: ¼ Ku½Onþ ΛðSn − ðnTSnÞnÞ�: (1)

Here Λ¼ðλ2−1Þ=ðλ2þ1Þ parametrizes the particle shape
(Λ ¼ −1 for disks, 0 for spheres, and 1 for rods). Further
S ¼ ðAþATÞ=2 and O ¼ ðA −ATÞ=2 are the symmetric
and antisymmetric parts of the matrix Aðrt; tÞ of flow gra-
dients. The time-averaged tumbling rate hn: 2i is determined
by the fluctuations of Sðrt; tÞ and Oðrt; tÞ along the particle
trajectories rt. In the limit of rapidly fluctuating random
flows (Ku → 0) the tumbling rate averaged along trajecto-
ries can be replaced by an average over the ensemble of S
and O. This average, denoted by hn: 2i0, is determined by
the invariants of S and O. For incompressible, isotropic
random flows one finds

hn: 2i ≈ hn: 2i0 ¼ Ku2ð−5TrhO2i þ 3Λ2TrhS2iÞ=15: (2)

Note that in homogenous flows TrhS2i¼−TrhO2i¼
TrhATAi=2. In turbulent flows TrhATAi is proportional to
the energy dissipation. An expression equivalent to Eq. (2)
was first derived in Ref. [13] and is also quoted in
Ref. [11]. Equation (2) is symmetric inΛ, meaning that disks
tumble at the same rates as rods. Differences between disks
and rods could arise for two reasons. First, one or more
symmetries may be broken. For example, breaking isotropy
[14] gives rise to an extra term that is odd in Λ. Second, in
homogenous, isotropic, and incompressible flows differences
in the behavior of disks and rods may arise due to preferential
sampling of the flow gradients.
The dynamics of small disks and rods are closely related.

Taking the limits Λ → −1 and Λ → 1 in Eq. (1) shows
that the unnormalized orientation vectors q (such that
n ¼ q=jqj) of disks and rods obey q

:
disk ¼ −KuATqdisk

and q
:
rod ¼ KuAqrod. In persistent flow regions, the dynam-

ics of q is determined by the eigenvectors of −AT or of A.
If all eigenvalues of A are real, rods align with the eigen-
vector corresponding to the largest eigenvalue. If A has
one real and two complex conjugate eigenvalues, rods align
if the real eigenvalue is positive and tumble otherwise.
Changing A → −AT (rods to disks) switches the signs
of the eigenvalues. Therefore, when A has complex eigen-
values the transformation A → −AT alters the dynamics
from tumbling to aligning, and vice versa. The eigenvalues
of A can be parametrized by the invariants TrA2 and TrA3

[15]. In turbulent flows the joint distribution of TrA2 and
TrA3 is known to be strongly skewed [16]. The resulting
asymmetry under TrA3 → −TrA3 in the distribution of
flow gradients causes different tumbling rates for rods and
disks in persistent flows.
This argument explains why rods and disks tumble dif-

ferently in persistent flow regions, where the flow gradient
matrix A remains approximately constant while n aligns.

In turbulent flows, however, the matrix A may change
on the same time scale as n. The resulting time-dependent
problem is very difficult to solve. Below we attack the
problem from a different point of view: in the limit of rap-
idly changing flows we express the tumbling rate in terms
of the Lagrangian fluctuations of A. The orientational
dynamics may be computed by iterating the implicit solu-
tion of Eq. (1):

nt0 ¼ n0 þ Ku
Z

t0

0

dt½Otnt þ ΛðStnt − ðnTt StntÞntÞ�: (3)

Here Ot ≡Oðrt; tÞ and St ≡ Sðrt; tÞ. Iteratively substitut-
ing nt into the rhs of Eq. (3) generates perturbation expan-
sions for nt and n

:
t in powers of Ku. Averaging gives us the

leading-order correction to Eq. (2)

h _n2i ¼ h _n2i0 þ
2

5
Ku3Λ

Z
∞

0

dt½−TrhO2
0S−ti

þ 2ΛTr
D
S0O0S−t

E
þ 3

7
Λ2TrhS2

0S−ti�. (4)

This correction is given by three-point Lagrangian correla-
tion functions of Ot and St.
Equation (4) shows that the Ku3 correction to Eq. (2)

contains terms antisymmetric in Λ, causing disks to tumble
differently from rods. For Gaussian random flows, the
Lagrangian correlation functions in the integrands of Eq. (4)
can be calculated analytically for small Ku, as we show
below. For turbulent flows we have determined the correla-
tion functions numerically, using data from the Johns
Hopkins Turbulence Database (JHTDB) [17,18].

Random flows.—We represent the incompressible,
homogenous, and isotropic random flow as uðr; tÞ ¼
∇∧Aðr; tÞ in terms of a Gaussian random vector potential
Aðr; tÞ with zero mean and correlation function
hAiðr0; 0ÞAjðr0; tÞi ¼ δij expð−jtjÞ=6 [19]. The corre-
sponding Eulerian correlation functions (evaluated at a
fixed point r0 in space) are given by TrhSðr0; 0ÞSðr0; tÞi ¼−TrhOðr0; 0ÞOðr0; tÞi ¼ 5e−jtj=2. The Eulerian three-point
functions vanish because the Gaussian gradient distribution
is even. The Lagrangian correlations at finite values of
Ku can be computed perturbatively, taking into account
recursively that the actual trajectory rt deviates from its
initial condition r0. As shown in Refs. [20,21], this yields
an expansion in Ku.
The Lagrangian correlation functions quantify the degree

of preferential sampling. As Eq. (4) shows, differences
in tumbling rates between disks and rods are determined
by Lagrangian three-point correlations. We find to third
order in Ku
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TrhS0O0Sti ¼
35Ku3

16
sgnðtÞe−jtjð1 − 2jtje−jtj − e−2jtjÞ;

TrhO0O0Sti ¼ − 125Ku3

288
sgnðtÞe−jtjð1 − 2jtje−jtj − e−2jtjÞ;

TrhS2
0Sti ¼ − 175Ku3

96
sgnðtÞe−jtjð1 − 2jtje−jtj − e−2jtjÞ:

(5)

Thus the Lagrangian flow-gradient fluctuations are not
Gaussian, a consequence of preferential sampling at finite
Kubo numbers. Extending Eq. (4) to Ku6 and inserting the
required correlation functions [such as Eq. (5)] we obtain

hn: 2i ¼ Ku2

6
ð5þ 3Λ2Þ − Ku4

4
Λ2ð5þ 3Λ2Þ

þ Ku6

864
Λð−25þ 4668Λþ 45Λ2 þ 7236Λ3

þ 2484Λ5Þ þ :::::: (6)

Odd powers in Λ occur in this expression, giving rise to
differences in tumbling between disks and rods. But the
effect is weak; it occurs to order Ku6. Equation (6)
(extended to order Ku8) can be resummed by Padé-Borel
resummation [22], yielding accurate results up to Ku ∼ 1.
We conclude that disks and rods tumble at almost the

same rates in Gaussian random flows. The question is thus
what causes the striking differences between the dynamics
of rods and disks observed in Ref. [11].
Turbulent flows.—According to Eq. (4), differences in

the tumbling of rods and disks due to preferential sampling
of the flow gradients are parametrized by Lagrangian
three-point correlation functions. We cannot compute these
correlation functions analytically, and have thus evaluated
them numerically using the JHTDB [17,18]. The data set
contains a direct numerical simulation of forced, isotropic
turbulence on a 10243 grid, for circa 45 Kolmogorov times
τK, at a Taylor microscale Reynolds number Reλ ¼ 433.
From the data set we computed the Lagrangian correla-
tions. The three correlation functions contributing to the
tumbling rate in Eq. (4) are shown in Fig. 1. The major
contribution after integration comes from the TrhO2

0S−ti
term, with the contribution of the TrhS2

0S−ti term approx-
imately a factor Λ2=3 smaller. These two terms together
result in a substantial contribution to the tumbling rate that

is odd in Λ, giving rise to pronounced differences in the
tumbling of rods and disks.
We have presented arguments valid for persistent flows

(large Ku), as well as the perturbative small-Ku result (4).
We now show that the conclusions drawn from the
two arguments are closely connected. In turbulence large
positive values of TrA3 typically coincide with large
negative values of TrA2 (vortex-dominated flow) [16,23].
Conversely, negative values of TrA3 typically coincide
with positive TrA2 (strain-dominated flow). We decompose
TrA3 ¼ 3TrO2Sþ TrS3, and note that in turbulence
TrhO2Si > 0 and TrhS3i < 0 (see Fig. 1). Thus, large pos-
itive values of TrA3 typically correspond to large values of
TrO2S. The corresponding flow regions are vortex tubes
[24] that persist long enough for rods to align and disks
to tumble. The differences in the tumbling rates of disks
and rods due to such persistent regions are reflected
in the integral over TrO2

0S−t in Eq. (4): first a local strain
creates the vortex tube. This takes several τK (Fig. 1, right
panel). During this time rods and disks align in different
ways, and after that disks start to rotate. Strain-dominated
flow regions, by contrast, correspond to large negative
values of TrS3 and the differences in tumbling rates result
in the integral over TrS2

0S−t in Eq. (4). In this case the
difference between rods and disks is due to the difference
in magnitude of eigenvalues. Since the middle eigenvalue
of A is positive on average, and the sum of eigenvalues is
zero, the magnitude of the first eigenvalue (acting on the
rod) is necessarily smaller than that of the last (acting
on the disk). Disks respond more quickly than rods to
strain-dominated regions and, hence, exhibit a larger tum-
bling rate also in these regions.
Figure 2 (left) shows how n

: 2 varies as a function of time
in a turbulent flow uðr; tÞ. Also shown is TrO2

tSt. In agree-
ment with the calculations and arguments outlined above,
rods align and disks tumble strongly when TrO2

tSt is large

FIG. 1: (color online). Numerical results for Lagrangian corre-
lations TrhS2

0Stiτ3K (cyan, ▿), hTrS0O0Stiτ3K (green, □) and
TrhO2

0Stiτ3K (magenta, ▵) obtained using the JHTDB [17,18]
(see text) in units of τK ≡ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrhATAi

p
.

FIG. 2 (color online). Left: tumbling rate n
: 2 for a disk (blue)

and a rod (red) in turbulent flow as a function of time, using
the JHTDB [17,18]. Also shown is TrO2

tSt (green). Right: aver-
age squared tumbling rate hn: 2i in turbulence as a function of
the aspect ratio λ (red, ∘). Equation (4) with data from Fig. 1
is shown as solid red. Also shown is n

: 2 averaged conditional
on large values of TrO2

tSt (green, □) (23% of the sampled data)
and conditional on small values of TrO2

tSt (magenta, △) (77%
of the sampled data). Inset: alignment distributions for disks
(blue, ⋄) and rods (red, ∘).
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and positive. Figure 2 (right) shows numerical results for
hn: 2i in a turbulent flow, as a function of the aspect ratio λ.
The numerical simulations are compared to the theoretical
result (4) with correlation functions according to Fig. 1.
Equation (4) is valid for small Ku. In turbulence Ku ∼ 1,
and the numerical tumbling rate hn: 2i is not expected to
agree quantitatively with Eq. (4). In other contexts we have
found that the parameter-dependence (in this case the Λ
dependence) in Ku expansions is often approximately
independent of Ku for small and intermediate Ku. This
may explain why the general shape of the curve shown
in Fig. 2 is approximately correct, but not the amplitude.
Also shown in Fig. 2 is n

: 2 averaged conditional on large
TrO2S: the substantial difference in tumbling rates of
disks and rods is largely caused by the flow configurations
with large TrO2S, confirming the picture outlined above.
Finally, when rods align with the leading eigenvector of
A, then the vorticity vector Ω ¼ ð∇∧uÞ=2 does the same.
This is expected since the equations of motion for rods and
vorticity have a common term involving A [10,25]. But for
disks the vector n is preferentially orthogonal to Ω (inset of
right panel of Fig. 2).
Effects of particle inertia.—When St > 0, different

moments of inertia and fluid resistance tensors result in
differences in the tumbling of disks and rods. Neglecting
possible inertial effects due to the fluid, the dynamics of
small spheroidal particles is

r
: ¼ Kuv; n

: ¼ Kuω∧n;
Stv

: ¼ ½CðtÞ
⊥ Iþ ðCðtÞ

∥ − CðtÞ
⊥ ÞnnT �ðu − vÞ;

Stω: ¼ ½CðrÞ
⊥ Iþ ðCðrÞ

∥ − CðrÞ
⊥ ÞnnT �ðΩ − ωÞ

− ΛCðrÞ
⊥ ðSnÞ∧nþ KuStΛðn · ωÞω∧n: (7)

Here St ¼ m=ð6π bμτÞ is the Stokes number of a spherical
particle of radius b, equal to the minor axis of the spheroi-
dal particle. The particle mass is m and μ denotes the
viscosity of the fluid. Further, I is the unit matrix, and
the coefficients C are given by translational (CðtÞ) and rota-
tional (CðrÞ) hydrodynamic drag [26] and moment of inertia
along (C∥) and perpendicular (C⊥) to the particle symmetry
axis:

CðtÞ
⊥ ¼ 8ðλ2 − 1Þ

3λðð2λ2 − 3Þβþ 1Þ ; CðtÞ
∥ ¼ 4ðλ2 − 1Þ

3λðð2λ2 − 1Þβ− 1Þ ;

CðrÞ
⊥ ¼ 40ðλ2 − 1Þ

9λðð2λ2 − 1Þβ− 1Þ ; CðrÞ
∥ ¼ 20ðλ2 − 1Þ

9λð1− βÞ ;

β ¼ 1

λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jλ2 − 1j

p ×
�

acosðλÞ if λ ≤ 1

acoshðλÞ if λ > 1
: (8)

Equations (7) and (8) are widely used in the engineering
literature; see for example Ref. [27] and references therein.
In the limit St → 0, Eq. (1) is recovered.

The tumbling rate resulting from Eq. (7) can be computed
in a small-Ku perturbation theory, analogous to our treat-
ment of Eq. (1) outlined above. To lowest order in Ku we
find for a spheroid in the random-flow model

hn: 2i ¼ Ku2

6

CðrÞ
⊥ ð5þ 3Λ2Þ
Stþ CðrÞ

⊥
: (9)

The result (9) is shown in Fig. 3 in comparison with results
of numerical simulations. We see that the tumbling rate
decreases as St increases, because the coupling between
the flow and the particle weakens. Finally, to order Ku2,
translational inertia does not affect the tumbling rate.
Caustics.—At finite Stokes numbers the center-of-mass

motion of inertial particles exhibits caustics [28] where the
phase-space manifold describing the dependence of center-
of-mass velocity upon position folds over. This gives rise
to large velocity differences between close-by particles
[29–33]. For nonspherical particles phase space contains
angular degrees of freedom and caustics cause particles
with misaligned orientation vectors to collide. Figure 3
(right) shows the distribution of angles Δφ between orien-
tation vectors of nearby particles. At larger values of St
caustics occur more frequently, giving rise to a broader
distribution of the collision angle Δφ. At still larger St the
distribution approaches that between uniformly randomly
distributed unit vectors, PðΔφÞ ¼ sin Δφ.
Conclusions.—We have shown in this Letter that in the

absence of inertial effects, tumbling in turbulent and random
flows is determined, to leading order, by Lagrangian three-
point correlations of the fluid gradients. In random flows we
have computed these correlations and found that preferen-
tial effects exist but are small. In turbulent flows we have
evaluated the correlation functions numerically, using the
JHTDB [17,18]. We have found that they give rise to a sub-
stantial difference in the tumbling rate between rods and
disks, and have explained this difference by the fact that

FIG. 3 (color online). Left: hn: 2i as a function of St in a
Gaussian random flow (see text). Symbols show results of
numerical simulations; solid lines show theory (8). Parameters:
Ku ¼ 0.1, λ ¼ ffiffiffiffiffiffi

0.1
p

(blue, ⋄), λ ¼ 1 (green, □), λ ¼ ffiffiffiffiffi
10

p
(red, ∘). Right: distribution of the relative angle Δφ between
the orientation vectors n of two particles close together (at sep-
aration R ¼ 0.1η). Black dashed curve shows sin Δφ. Parame-
ters: Ku ¼ 1, λ ¼ ffiffiffiffiffi

10
p

. St ¼ 0 (cyan, ▿), St ¼ 1 (green, □),
and St ¼ 10 (magenta, ▵).
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persistent regions of high vorticity strongly contribute to the
Lagrangian three-point statistics. For larger particles, we
have found that rotational inertia affects the tumbling rate
and the angle at which particles collide, due to the formation
of rotational caustics. It would be interesting to study how
the nonergodic statistics of vortex tubes in turbulent flows
affects the tumbling rates of disks and rods with finite but
small inertia.

Financial support by Vetenskapsrådet and by the Göran
Gustafsson Foundation for Research in Natural Sciences
and Medicine is gratefully acknowledged. The numerical
computations were performed using resources provided
by C3SE and SNIC, and the numerical results in Figs. 1
and 2 use data from the Johns Hopkins Turbulence
Database.
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