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We study the genesis and the selective propagation of complex crack networks induced by thermal

shock or drying of brittle materials. We use a quasistatic gradient damage model to perform large-scale

numerical simulations showing that the propagation of fully developed cracks follows Griffith criterion

and depends only on the fracture toughness, while crack morphogenesis is driven by the material’s internal

length. Our numerical simulations feature networks of parallel cracks and selective arrest in two

dimensions and hexagonal columnar joints in three dimensions, without any hypotheses on cracks

geometry, and are in good agreement with available experimental results.

DOI: 10.1103/PhysRevLett.112.014301 PACS numbers: 46.15.Cc, 62.20.mt

Complex crack patterns are ubiquitous in nature and in
technology applications. Yet the theoretical understanding
and predictive numerical simulation of how and when
complex crack patterns arise (nucleation) and how they
evolve (crack propagation) are fraught with challenges.
Although approaches based on phase fields [1] or varia-
tional regularizations [2] have led to significant advance in
the numerical simulation of complex crack patterns, short
of introducing initial flaws at the structural scale [3],
prescribing ad hoc stress criteria [4], or accepting global
energy minimization arguments whose physical relevance
is debated [5–7], the predictive understanding of crack
nucleation is still an elusive goal.

It is well accepted that while Griffith-like models are
appropriate for crack propagation at the scale of a struc-
ture, they are inadequate for the modeling of crack nuclea-
tion in brittle materials. Arguably, finer models, where a
microscopic (material) length scale plays a fundamental
role, are necessary to determine the critical load and crack
geometry at the onset, especially in situations where com-
plex crack patterns arise straight from the nucleation. The
consistent combined modeling and numerical simulation
of crack nucleation and propagation from the material to
the structural length scale is a challenging and largely open
issue.

In this Letter, we study the morphogenesis and the
selective growth of complex crack patterns induced by
material shrinking under thermal shock. We report unpre-
cedented quantitative agreement between numerical simu-
lations, a theoretical model, and experiments at scales
spanning from the material internal length to the structural
length scale. Our numerical simulations predict key fea-
tures of fracture patterns observed in experiments, such as
the formation of periodic patterns and the scaling laws

governing their selective propagation in two and three
dimensions, and do not require any a priori hypotheses
on cracks geometry. The method we use leverages recent
progress in the understanding of the links between damage
models [8,9] and the variational approach to fracture
[2,10]. It is based on a rate-independent gradient damage
model with stress softening based on two material parame-
ters: the fracture toughness, which rules the evolution of
fully developed cracks, and the material’s internal length,
which controls the initial stages of crack nucleation.
We investigate the thermal shock of brittle ceramics, a

now classical experimental setup [3,11,12] where a sample
initially at a uniform temperature T0 is quenched in a cold
bath at temperature T0 ��T. We consider a rectangular
slab � exposed to the thermal shock through its thin faces
only. We focus first on very thin slabs, which we represent
by a two-dimensional body in plane stress. We assume that
within the range of temperatures involved, the material
properties remain constant. Denoting by u the displace-
ment field and " ¼ ðruþrTuÞ=2 the linear strain tensor,
we consider for the sound material a linear elastic behavior
of energy density c tð"Þ ¼ A0ð"� "tht Þ � ð"� "tht Þ=2,
where A0 is the isotropic elastic stiffness tensor. The in-
elastic deformation induced by the time-dependent tem-
perature field Tt is "tht ¼ �ðTt � T0ÞI, where I is the
identity matrix. The index t is meant to highlight the
dependence on time. We neglect the cracks’ influence on
heat transfer so that the temperature field Tt solves the heat
equation @tTt � kcr2Tt ¼ 0 on�. Phase changes, nonuni-
form convection, and other nonlinear aspects of the heat
exchange between the fluid and the sample are neglected
by assuming that the temperature of the domain boundary
exposed to the thermal shock is constant and equal to that
of the water bath, i.e., Tt ¼ T0 � �T on @�. Inertial
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effects are not considered because the diffusion velocity of
the temperature field is much slower than the wave speed in
the material at the relevant scales in time and space. This
hypothesis is universally accepted in the literature on
thermal shock problems [3,4,12–14]. We model material
failure using a gradient damage model characterized by the
energy function

E tðu; �Þ ¼
Z
�

c tð"Þ
sð�Þ þ Gc

4cw

�
wð�Þ
‘

þ ‘jr�j2
�
dx; (1)

where � is a scalar damage field varying between 0 (sound
material) and 1 (fully damaged material), Gc is the mate-

rial’s fracture toughness, ‘ is an internal length, and cw ¼R
1
0

ffiffiffiffiffiffiffiffiffiffi
wðsÞp

ds is a normalization constant. In a time-discrete

setting, the quasistatic evolution is obtained by solving
at time ti the following minimization problem:
minu;���i�1

Etiðu; �Þ, where the unilateral constraint on �

enforces the irreversibility condition on the damage. The
compliance function s and the energy dissipation function
w should be chosen such that (1) converges as ‘ ! 0 to a
Griffith-like energy

R
�n� c tð"ÞdxþGcSð�Þ, where S is

the surface measure of the crack � [2,15,16]. In this model,
material interpenetration in the fully damaged area is
possible. In all the simulations presented here, it can be
checked a posteriori that this issue does not present itself.
Here, we use sð�Þ ¼ 1=ð1� �Þ2 and wð�Þ ¼ �, a choice
motivated by the convenience of its numerical implemen-
tation and specific analytical studies [9,17]. With this
choice the damage model has a stress-softening behavior
and remains purely elastic without damage until the stress
reaches the critical value,

�c :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GcEw

0ð0Þ
2cw‘s

0ð0Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
3GcE

8‘

s
: (2)

The relation above may be used to determine the numerical
value of the internal length for a specific material from the
knowledge of its elastic limit �c, Young modulus E, and
fracture toughness Gc [17]. The present model is in many
aspects similar to the phase-field models of fracture
developed independently [18]. Those with single-well
dissipation potentials [1,19] are in the form of (1) with
wð�Þ ¼ c½1� gð1� �Þ�, where gð�Þ ¼ 4�3 ��4. One
significant difference is that, while phase-field models
typically involve some form of viscous regularizations,
our formulation is rate independent. In addition, the current
literature based on phase-field models is concerned only
with the propagation of preexisting cracks and does not
consider the initiation problem.

The dimensional analysis of the energy (1) highlights
three characteristic lengths: the geometric dimension of the
domain L, the internal length ‘, and the Griffith length
‘0 ¼ Gc=ðE�2�T2Þ. Using the material’s internal length
as the reference unit, the problem can be reformulated in

terms of two dimensionless parameters, the dimension of
the structure L=‘ (a geometric parameter) and the intensity
of the thermal shock ‘0=‘ (a loading parameter). This is a
significant departure from the classical Griffith setting
where the only relevant parameter is L=‘0 [4,5,13].
Figure 1 compares the experiment from Fig. 5(d) of

Ref. [20] (1� 9:8� 50 mm ceramic slab, �T ¼ 380 �C)
with the damage field from a numerical solution of the
gradient damage model. The material properties, commu-
nicated by the authors of Ref. [8], are E ¼ 340 GPa, � ¼
0:22, Gc ¼ 42:47 Jm�2, �c ¼ 342:2 MPa, and � ¼ 8�
10�6 K�1, which using (2) gives ‘ ¼ 46 �m and ‘0 ¼
14 �m. As our model is rate independent, its solution is
independent of kc, up to a change of time scale. The
numerical results are obtained through a finite element
discretization and the approach of Refs. [2,17,21]. The
main technical difficulties are the constrained minimiza-
tion of a nonconvex energy and the need for a spatial
discretization adapted to the material length scale ‘.
Cracks correspond to the localized bands where � goes
from 0 to 1 and back to 0. The qualitative agreement
between experiments and simulation is very good. In par-
ticular, our simulations reproduce the key phenomenon:
the emergence of a periodic array of parallel short cracks at
the initiation and their selective propagation toward the
interior of the slab. Figure 1(c) shows a quantitative com-
parison between the numerical simulation of Fig. 1(a) and

FIG. 1 (color online). Full-scale numerical simulation of a
ceramic slab submitted to a thermal shock. (a) Damage field
from the numerical simulation (blue, � ¼ 0; red, � ¼ 1).
(b) Experimental results from Fig. 5(d) of Ref. [20].
(c) Average crack spacing d as a function of their depth a for
(a) and (b). The solid line is an approximate scaling law obtained
in Ref. [13] by imposing a period doubling condition on a
Griffith model. Here, ‘ ¼ 46 �m is the material internal length,
‘0 ¼ Gc=ðE�2�T2Þ ¼ 14 �m the Griffith length (loading pa-
rameter), 2L ¼ 9:8 mm the total depth of the slab. See Fig. 2 for
the meaning of the distributed damage zone.

PRL 112, 014301 (2014) P HY S I CA L R EV I EW LE T T E R S
week ending

10 JANUARY 2014

014301-2



experimental data from Ref. [20] by plotting the average
crack spacing d as a function of the distance a to the edge
exposed to the thermal shock for the final configuration;
the agreement is striking. Note that in the experimental
results shorter cracks are probably filtered out by the
adopted experimental crack detection methods [17]. In a
first regime, very short equidistributed cracks nucleate (the
plateaus of the crack spacing for short depth in the numeri-
cal experiments), followed by selective arrest and period
doubling (see the Supplemental Material [22]). In the
central region of the plot, we can compare experimental
and simulation data with a scaling law obtained in Ref. [13]
through linear fracture mechanics calculations by impos-
ing a bifurcation condition between crack propagation
modes with period doubling or not (solid line). For larger
values of a, we observe the final crack arrest caused by the
finite size of the sample, again in very good agreement with
the experiments. Whereas classical theories can be applied
in the second and third regimes consisting of fully devel-
oped cracks, they cannot properly account for the nuclea-
tion phenomenon observed here without preexisting flaws.
Our simulations are initialized with a null damage field, an
homogenous material, and an unflawed geometry. The
crack nucleation is due to the softening character of the
material behavior.

The second series of simulations focuses precisely on
the crack nucleation process and, hence, on short times. In
this setting, one can assume that the domain is semi-
infinite, so that the geometric parameter L=‘ is infinite
and the only parameter is the intensity of the thermal shock
‘0=‘. For an undamaged material, the stress is uniaxial and
reaches its maximum value �max ¼ E��T at the surface
of the thermal shock. Since ð�max=�cÞ2 ¼ 3‘=8‘0, for
mild-enough thermal shocks (‘0=‘ > 8=3), the critical
stress is never reached and the solution remains elastic at
all time. If ‘0=‘ < 8=3, damage takes place at t ¼ 0, is
homogeneous in the horizontal direction, and non-null in a
band of finite thickness D, which penetrates progressively
inside the body until a critical time t�. At t ¼ t� the
horizontally homogeneous solution becomes unstable and
the damage field develops oscillations of periodicity ��
[Fig. 2(a)]. The analytical solutions for the damage field in
the first stage of the evolution and its bifurcation and
stability analysis are reported in Ref. [23], providing semi-
analytical results for the periodicity ��, the damage pene-
tration D�, and the time t� at the bifurcation. Here, we
perform several simulations varying ‘0=‘ and detect the
critical parameter at the bifurcation. In Fig. 2(b) the nu-
merical simulations (dots) are compared to Ref. [23] (solid
lines). The good agreement provides an excellent verifica-
tion of our numerical model. For severe shocks (‘0 � ‘),
the results disclose a well-definite asymptotic behavior

with �� 	 ffiffiffiffiffiffiffiffi
‘0‘

p
, D� 	 ‘, and t� 	 ‘0‘=kc. In this regime

we observe numerically that all oscillations at the bifurca-
tion develop in fully formed cracks (max� ¼ 1), which is

not the case for milder shocks (‘0 	 ‘). However, the full
postbifurcation analysis remains an open problem at this
time.
Experimental studies show that in three dimensions,

cracks delineate cells with coarsening polygonal cross
sections [24]. Because of the complexity of the problem,
the few available theoretical and numerical studies are
based either on simplified two-dimensional models
[25,26] or on strong assumptions on the crack geometry
[27]. The numerical simulation and analysis of the full
three-dimensional problem is a major challenge for classi-
cal fracture mechanics tools and remains, therefore, largely
unexplored.
Figure 3 is a three-dimensional version of the simulation

from Fig. 1 on a plate of thickness 1 mm, for increasing
values of �T. The fracture geometry is represented
by the level surface � ¼ 0:95. In order to reduce the

(a)

(b)

FIG. 2 (color online). Crack nucleation. (a) Damage field near
the shock surface before (left) and after (right) bifurcation time
t� for ‘0=‘ ¼ 0:107 showing the bifurcation of a horizontally
homogeneous damaged band of depth D� toward a periodic
solution with wavelength ��. (b) Wavelength, time, and damage
penetration in numerical simulations for several intensities of the
thermal shock ‘0=‘ (dots), compared to the semianalytical
results from Ref. [23] (solid lines).

(a)

(b)

(c)

(d)

FIG. 3 (color online). Three-dimensional version of the ex-
periment from Fig. 1(b) showing the transition from two- to
three-dimensional crack patterns. The simulations are performed
on a subdomain of dimension 5� 1� 1 mm and temperature
contrast (a) 380 �C (‘0 ¼ 0:27‘), (b) 480 �C (‘0 ¼ 0:17‘),
(c) 580 �C (‘0 ¼ 0:12‘), and (d) 680 �C (‘0 ¼ 0:08‘).
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computational cost, the computation is performed on a
fragment of width 5 mm and height 1 mm of the domain,
and the temperature is assumed constant throughout the
thickness of the sample. We observe a transition from
transverse cracks to three-dimensional fracture patterns
delimiting polygonal cells between 480 �C and 580 �C,
which is consistent with Fig. 5 of Ref. [20]. Another series
of simulations performed at constant temperature for
increasing sample thickness (not shown here) highlights
the same behavior: transverse cracks for thin domains,
transitioning to three-dimensional cracks for thicknesses
between 1 and 2 mm. This is also consistent with the
observations in Fig. 5 of Ref. [20] and justifies the use of
a two-dimensional model, a posteriori.

Figure 4 shows a fully three-dimensional crack pattern
obtained for a domain of dimension 150‘� 150‘� 20‘
for ‘0 ¼ 0:05‘. During the simulation, a disordered
pattern of small cells nucleates in the first time steps and
propagates quasistatically inside the domain. A selection
mechanism leading to honeycomb patterns with increas-
ingly large and regular cells arises from energy minimiza-
tion. Tracking the propagation of the three-dimensional
crack front of Fig. 4 using a classical Griffith-based model
requiring an explicit description of the crack surface and its
propagation criterion would be prohibitively complex.
Instead, our three-dimensional computations are per-
formed through a straightforward extension of the discre-
tization and minimization algorithm for the energy (1).
Obtaining a three-dimensional equivalent of the scaling
law from Fig. 1 giving fracture cell diameter as a function
of the depth would require simulations on larger domains.
Such simulations are computationally prohibitive, hence,
we perform a series of numerical experiments by fixing the
loading ‘0 and by varying at the same time the internal

length ‘ and the domain size L so as to keep their ratio
equal to L=‘ ¼ 40. The number of elements is kept con-
stant with a mesh size h ¼ ‘=5. For each computation, we
compute the average cell diameter d as a function of
distance from the bottom edge a using postprocessing
software. This process does not involve any adjustable
parameter, shown in Fig. 5, yet our results match the
two-dimensional scaling law of Ref. [13] over several
orders of magnitude, leading us to conclude that the scale
selection mechanisms in two and three dimensions are very
similar. In addition, while the initial phase of the evolution
depends strongly on ‘, later time evolution of fully devel-
oped cracks at the structural scale is unaffected by this
parameter, matching the general scaling law for a Griffith-
based model. This finding is consistent with the properties
of the energy functional Et which is known to lead to a
Griffith-type propagation criterion [16,19,28,29].
Our simulations show that a purely quasistatic model

based on energy minimization can fully explain the for-
mation of imperfect polygonal patterns and their selective
coarsening as a ‘‘maturation’’ mechanism during propaga-
tion, a phenomenon sometimes attributed to nonequilib-
rium processes [24]. We show that a carefully chosen
gradient damage model can be used to account simulta-
neously for the nucleation of complex crack patterns and
their propagation following Griffith criterion. Further work
will be carried out to perform a careful statistical analysis
of the geometry of the 3D crack patterns and further
comparisons to experimental results. The present modeling
framework has a general validity and can be applied to
other domains including, for example, the formation of
basalt columns with uniform cross-sectional diameters

FIG. 4 (color online). Complex fracture pattern for ‘0 ¼
Gc=ðE�2�T2Þ ¼ 0:05‘ in a domain of size 150‘� 150‘�
20‘ color coded by distance from the bottom surface where
the thermal shock is applied. The problem was discretized with
approximately 4:4� 107 linear finite elements in space (mesh
size h ¼ ‘=5) and 100 time steps. The computation was per-
formed on 1536 cores of the NSF-XSEDE cluster Stampede at
Texas Advanced Computing Center in 10 h.

(a) (b)

(c)

FIG. 5 (color online). Average size d (square root of the
average cross-sectional area) of the fracture-delimited cells as
a function of the depth a (distance to the exposed face) in cubic
domains with edge length L ranging from 2 mm to 2 m com-
pared with the two-dimensional scaling law from Ref. [13] (solid
line). All the simulations are with ‘0 ¼ 14 �m and ‘ ¼ L=40.
Inset: Top view of the crack patterns for (a) L ¼ 2 mm,
(b) L ¼ 63:2 mm, and (c) L ¼ 2 m.
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through the solidification of lava fronts [24] or shaping of
biological systems as observed in the scales on the heads of
crocodiles [30]. We are also considering stronger thermo-
mechanical coupling including the effect of cracks on heat
transfer as in Refs. [14,31].
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