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In this Letter we study a system consisting of two nearly degenerate mechanical modes that couple to a
single mode of an optical cavity. We show that this coupling leads to nearly complete (99.5%) hybridization
of the two mechanical modes into a bright mode that experiences strong optomechanical interactions and a
dark mode that experiences almost no optomechanical interactions. We use this hybridization to transfer
energy between the mechanical modes with 40% efficiency.
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Optomechanical systems, in which electromagnetic
resonators interact with mechanical resonators, offer a plat-
form for studying a wide range of nonlinear and quantum
effects. These systems have been studied in the context of
quantum-limited detection of forces and displacements, the
production of nonclassical states of light, synchronization
and chaotic dynamics, and tests of quantummechanics with
massive degrees of freedom [1].
Optomechanical systems are usually modeled as a single

optical mode that is parametrically coupled to a single
mechanical mode. This simple model accurately describes
many experiments; however, real devices invariably consist
of multiple optical and mechanical modes. The presence of
multiple modes can provide important capabilities, includ-
ing new types of optomechanical interactions, robust means
for detecting quantum effects, and the ability to transfer
quantum states between different systems [2–13].
One important class of multimode optomechanical sys-

tems consists of devices in which a single optical mode
couples to multiple mechanical modes. This situation arises
naturally when an optomechanical device with well-
separated optical resonances is driven by a single laser
beam. Within the usual weak-coupling description of opto-
mechanics, the undriven optical modes are irrelevant, and
only the driven mode needs to be considered [14–16].
Mechanical modes, on the other hand, cannot be ignored
just because they are not driven. This is because any optical
mode can be detuned (to some degree) by the displacement
of any of the devices’ mechanical modes. As a result, the
effective Hamiltonian for such a device will involve one
optical mode coupled to many mechanical modes.
In such a system, the motion of a given mechanical mode

will modulate the intracavity optical field, which will in
turn drive the other mechanical modes. This can be thought
of as an optically mediated coupling between the mechani-
cal modes. This intermode coupling can be neglected for
mechanical modes whose resonance frequencies are well
separated. However, mechanical resonators with some

degree of symmetry will have some nearly degenerate

modes, and for these modes this coupling can be important.
In this Letter we demonstrate that the optomechanical

coupling between one optical mode and two mechanical
modes causes the mechanical modes to nearly fully (99.5%)
hybridize into bright and dark states. We then transfer
classical mechanical energy between the mechanical modes
by modulating the hybridization in a classical analogy to
Rabi oscillations. The optomechanical hybridization of
mechanical modes has been seen previously in a photonic
double-nanobeam system [17], whispering gallery-mode
resonators [17,18], and nanobeams embedded in a micro-
wave cavity [19]. However, these experiments did not use
this hybridization to transfer energy. Two of these devices
would have a low transfer efficiency because of a relatively
low mechanical quality factor [17] or incomplete hybridiza-
tion [19]. We estimate that the device in Ref. [18] could
transfer energy with reasonable efficiency, but Ref. [18]
focused on using the optical force to regeneratively oscillate
and synchronize the two mechanical resonators.
The device described here operates in the classical

regime. However, in the quantum regime (that is, when
the mechanical modes are nearly in the ground state),
the fact that the intrinsic mechanical damping rate is small
and the intermode coupling is both conservative and strong
(in contrast to previous work [17,19,18]) means that it
would be well suited for realizing proposals for entangling
mechanical modes and creating nonclassical mechanical
states [4,5,8,10]. In addition, the long lifetime of the
mechanically dark state could be used to store quantum
information [17,20].
The device studied here is a “membrane-in-the-middle”

optomechanical system composed of a SiN membrane
placed in an optical fiber cavity [Fig. 1(a)] [21,22]. The
70 μm long Fabry-Perot cavity is formed between the
end faces of two 200 μm diameter single-mode optical
fibers. Each fiber face has a concavity with a 300 μm radius
of curvature and a dielectric coating that is highly reflective
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at wavelength λ ¼ 1550 nm. The resulting cavity has
a finesse ≲100 000 depending upon the position of
the membrane, corresponding to a cavity linewidth
κ=2π ≳ 20 MHz.
The SiN membrane is 250 μm square and 100 nm thick.

Because it is nearly square and under significant stress,
the resonance frequencies of its higher-order modes are
expected to be simply related to its fundamental resonance
frequency ωð1;1Þ=2π ¼ 1.7 MHz. Labeling each mode
by the number of antinodes along each axis (j, k), as
shown in Fig. 1, the resonance frequencies are
ωðj;kÞ ¼ ωð1;1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j2 þ k2
p

=
ffiffiffi

2
p

. We find that the measured
ωðj;kÞ follow this relationship to within 0.1% for j,
k < 6, implying that each mode with j ≠ k has a (nearly)
degenerate partner.
As described in Ref. [22], the membrane is positioned

so that the frequency of the optical cavity varies linearly
with the membrane position. The cavity is locked to the
laser at frequencies ≪ ωð1;1Þ so the membrane’s motion
is imprinted on the reflected laser field, which is measured
using a heterodyne technique. We measure the power spec-
tral density of the heterodyne signal near the membrane’s
resonance frequencies and fit these data to extract each
mechanical mode’s linewidth and resonance frequency.
Before concentrating on the cavity-induced coupling

between nearly degenerate mechanical modes, we charac-
terize the optomechanical shift in the resonance frequency
(“optical spring”) and linewidth (“optical damping”) of
the nondegenerate (3,3) mode. For this mode,
ωð3;3Þ=2π ¼ 5.092 MHz, and the quality factor Qð3;3Þ ¼
500 000. The effective mass is m ¼ ρV=4 ¼ 5.4 ng, which
is the same for all of the membrane’s modes.
The effects of the optomechanical coupling are revealed

by varying the detuning Δ between the laser and the cavity.
In Fig. 2 we plot the shift in the mechanical linewidth δγð3;3Þ
and the resonance frequency δωð3;3Þ as a function of Δ.
Since ωð3;3Þ ≈ 0.2κ (the unresolved-sideband regime),
δωð3;3Þ and δγð3;3Þ are largest when Δ ≈ −κ=3. We sepa-
rately measure the incident power Pin ¼ 3 μW and relative

input coupling κL ¼ 0.05κ and fit the data in Fig. 2 to
theoretical predictions [14,15] using the single-photon
optomechanical coupling gð3;3Þ and cavity linewidth κ as
fitting parameters. The result of this fit is shown in
Fig. 2 (green line) and gives κ=2π ¼ 21 MHz and
gð3;3Þ=2π ¼ 1050 Hz, in agreement with independent
measurements.
Now we focus on the effect of the optomechanical

coupling on the nearly degenerate (3, 5) and (5, 3) mechani-
cal modes. For these modes, ωð3;5Þ=2π ¼ 6.999 MHz,
ωð5;3Þ=2π ¼ 7.005 MHz, Qð3;5Þ ¼ 440 000, Qð5;3Þ ¼
220 000, gð3;5Þ=2π ¼ 700 Hz, and gð5;3Þ=2π ¼ 950 Hz. In
Figs. 3(a) and 3(c) we plot the measured power spectral
density of the heterodyne signal as a function of Δ (y axis)
and the measurement frequency (x axis) at two different
incident powers (Pin ¼ 3 μW and Pin ¼ 38 μW). The ther-
mal motion of each mode is clearly visible in these power
spectral densities.
In order to qualitatively understand the data in Figs. 3(a)

and 3(c) and make a comparison with theory, we consider a
system of N mechanical oscillators coupled to a single opti-
cal mode. This analysis is presented in the Supplemental
Material [23]. When N ¼ 2, as in our system, we can sim-
plify the more general theory using a description based on
bright and dark states.
Specifically, we start with two intrinsic mechanical

modes, each with displacement zn, single-photon optome-
chanical coupling gn, intrinsic complex resonance fre-
quency ξn ¼ ωn − iγn=2, and intrinsic mechanical
susceptibility χn½ω�−1 ¼ iξn − iω (where n ¼ 1, 2). We
then define a dark state displacement zd ¼ vz1 − uz2,
which is a linear combination of the original, intrinsic mode
displacements with weights u, v ¼ g1;2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g21 þ g22
p

. The
“dark” label is used because zd is not coupled to the cavity
(that is, the single-photon optomechanical coupling
gd ¼ 0).

FIG. 1 (color online). (a) Experimental setup with a SiN mem-
brane placed in a cavity formed between the mirrored ends of
two fibers. (b)–(d) Schematic representation of the mode shapes
of the three relevant membrane modes.

FIG. 2 (color online). Optomechanically induced shift in
mechanical linewidth (top) and frequency (bottom) of the (3,3)
membrane mode as a function of detuning with theoretical fit
(solid green line). These data are taken with an incident power
of 3 μW and a cavity linewidth of 21 MHz.

PRL 112, 013602 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

10 JANUARY 2014

013602-2



On the other hand, the single-photon optomechanical
coupling of the bright mode, with modal displacement
zb ¼ uz1 þ vz2, is larger than that of the original modes
gb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g21 þ g22
p

. The new modes zb and zd have intrinsic
complex resonance frequencies ξb;d ¼ u2ξ1;2 þ v2ξ2;1 and
are generally not normal modes of the system; the effective
coupling between them is gbd ¼ uvðξ1 − ξ2Þ.
Using these expressions, the displacement spectra of zb

and zd in response to the thermal Langevin forces ηb and
ηd are

ðχ−1b ½ω� þ iΣbb½ω�Þzb½ω� ¼ −igbdzd½ω� þ ffiffiffiffiffi

γb
p

ηb½ω�; (1)

χ−1d ½ω�zd½ω� ¼ −igbdzb½ω� þ ffiffiffiffiffi

γd
p

ηd½ω�: (2)

The only term in these expressions that depends on the
optical drive is the “self-energy” Σbb½ω�, which determines
the optical spring δωb ¼ ReðΣbb½ωb�Þ and damping
δγb ¼ −2 ImðΣbb½ωb�Þ of the bright mode.
We use this model to fit the data in Fig. 3(a,c) and plot

the resulting theoretical curves in Figs. 3(b) and 3(d) (see
Supplemental Material for a direct comparison of theory
and data [23]). The system parameters κ, Δ, and Pin are
determined from simultaneous measurements of the (3,3)
mode (as in Fig. 2). We then use a least-squared fit to
the data in Figs. 3(a) and 3(c) to determine the remaining
parameters: g1;2, ω1;2, and γ1;2 [where the subscripts 1 and 2
now label the modes (3,5) and (5,3)].
This model also provides a qualitative interpretation of

the data. In order to significantly hybridize the intrinsic
modes into bright and dark modes, the optical spring
δωb needs to be large enough that jωb þ δωb − ωdj ≫
jgbdj or, in this case, −δωb=2π ≫ 1 kHz. At low Pin
[Figs. 3(a) and 3(b)] or at high Pin and large detunings [near

the bottom of Figs. 3(c) and 3(d)], the optical spring is
relatively small and this condition is not satisfied. The
intrinsic modes do not significantly hybridize and instead
independently exhibit essentially the same behavior as
shown in Fig. 2 for the nondegenerate (3, 3) mode.
On the other hand, in Figs. 3(c) and 3(d) at detunings

Δ≳ −1.5κ the optical spring is large enough that the intrin-
sic modes begin to hybridize into bright and dark modes.
When the detuning Δ≳ −0.75κ, the lower-frequency state
is almost entirely bright and exhibits large optical spring
and optical damping, while the higher frequency state is
almost entirely dark (based on the fit parameters from
Fig. 3 the hybridization is 99.5%). In this regime the cou-
pling gbd leads to only two noticeable effects. First, it
makes the effective dark mode linewidth larger than the
intrinsic linewidth of γd=2π ¼ 20 Hz. Second, it allows
the dark mode to be visible in the reflected light spectrum;
otherwise this mode would be completely uncoupled from
the cavity field.
The high mechanical quality factors and purely optome-

chanical coupling of the membrane modes make it possible
to observe this hybridization in the time domain. As shown
in Fig. 4, modulating the optical drive results in the transfer
of mechanical energy between the two intrinsic mechani-
cal modes.
This measurement starts by using a piezo actuator

to drive either the (3,5) or (5,3) mechanical mode and lock-
ing the cavity to a weak laser beam with detuning
Δweak ¼ −0.7κ for Figs. 4(a)–4(c) and Δweak ¼ −0.4κ for
Figs. 4(d)–4(f). For this measurement, the cavity linewidth
κ=2π ¼ 40 MHz. The weak laser beam is primarily used to
measure the mechanical displacement, though its dynami-
cal backaction does increase the mechanical linewidths by a
factor of ∼2. The piezo drive is turned off and a strong laser
beam at detuning Δweak þ κ=8 and power Pin is turned on

FIG. 3 (color online). Power spectral density (arbitrary units) of the heterodyne signal (a), (c) and theoretical fits (b), (d) as a function
of measurement frequency (horizontal axis) and detuning between the incident laser and the cavity resonance (vertical axis). The data are
presented for two incident laser powers: 3 μW for (a), (b) and 38 μW for (c), (d). A direct comparison of the theory and the data is shown
in the Supplemental Material [23].
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for a time τ. This pulse hybridizes the mechanical modes.
After this pulse, the weak laser beam is used to determine
the energy in each of the intrinsic mechanical modes. This
measurement is facilitated by the separation in time scales
between the 10 ms lifetimes of the intrinsic mechanical
modes, the 100 μs period of the hybridization oscillations,
the 140 ns period of mechanical oscillations, and the 10 ns
lifetime of the optical cavity.
In Fig. 4 we plot the ratio of the final energy in

each intrinsic mechanical mode after the pulse to the total
initial energy as a function of τ and at different Pin. In
Figs. 4(a)–4(c) the system is initialized by driving the
(5,3) mode, while in Figs. 4(d)–4(f) it is initialized by
driving the (3,5) mode. The theory curves in Fig. 4 are
derived from the solution to a set of differential equations
describing the motion z1 and z2 of two linearly coupled
harmonic oscillators. The coupling and oscillator para-
meters are taken from the self-energy matrix Σ½ω� (see
Supplemental Material [23]) and depend on the strength
and detuning of the “strong” laser pulse.
In Fig. 4, some of the parameters for the theory curves

are chosen manually to match the data. The values of g1;2,
ω1;2, and γ1;2 are determined by fitting data similar to
Fig. 3. The cavity linewidth κ is measured independently.
A single value of Δweak is chosen to fit the data in the three
upper plots. Pin is chosen to fit the data in Fig. 4(a), and
then increased by a factor of 2 in Fig. 4(b), and another
factor of 2 in Fig. 4(c), in accordance with the experimental
procedure. The same approach was used to choose different
values ofΔweak and Pin for the lower three plots. Finally, we
apply a scaling factor of 1.3 to the initial energy in the

driven mode to correct for the nonlinearity of the detector.
This manual choice of five parameters completely deter-
mines the theory curves in Fig. 4.
The pulse power used in Fig. 4 is sufficient to hybridize

the system, resulting in Rabi-like oscillations between the
intrinsic (3,5) and (5,3) eigenmodes. We can gain a more
qualitative understanding of the data in Fig. 4 by consid-
ering the hybridization of the original modes into bright
and dark modes. The oscillation frequency increases with
Pin since the frequency splitting between the dark and
bright modes is increased. The oscillations are suppressed
on a time scale given by the optomechanically dominated
damping rate of the bright mode, which also increases with
increasing Pin. After the bright mode decays, the ratio of
the energy in the two modes is constant and given by
the fractional contribution of each intrinsic mode to the
dark mode. The total energy continues to decrease as the
dark mode decays.
By optimizing the pulse power and length, we are able to

transfer energy between the two intrinsic modes with an
efficiency of 40% [e.g., see Figs. 4(b) and 4(c)]. This trans-
fer efficiency is limited by the optomechanical damping
of the bright mode δγb. Since δγb is comparable to the
coupling rate between the mechanical modes, significant
energy is lost to the optical field during the energy transfer.
The transfer efficiency can be increased by increasing the
ratio of the optical spring to the optical damping δωb=δγb
by, for example, operating in either the resolved κ ≪ ωm or
unresolved κ ≫ ωm sideband limit [10].
The main barrier between the present setup and operation

in the quantum regime is the 300 K temperature of the

FIG. 4 (color online). The energy in each mechanical mode immediately after a hybridization pulse, plotted as a function of the pulse
duration. The energy is normalized to the energy in the driven mode just before the hybridization pulse. In panels (a)–(c) the system is
initialized by driving the (3,5) mode and shows the transfer of energy to the (5,3) mode. Panels (d)–(f) show the transfer of energy in the
opposite direction. Solid lines are the fits described in the text, and the error bars indicate statistical uncertainties.
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environment. To consider the performance of this system in
a cryogenic environment, we note that if it was cooled to
100 mK, it would be possible to laser cool both of the
membrane modes to a mean energy of less than one phonon
[14,15]. Assuming thatQð3;5Þ andQð5;3Þ increase to 5 × 106

at cryogenic temperatures [24,25], the thermal and optome-
chanically induced decoherence rates become comparable
to the coupling strength between the two mechanical
modes. With these assumptions, we estimate the quantum
state transfer fidelity to be 10% (see Supplemental Material
[23]). We note that the device described here is well suited
to cryogenic operation. For example, SiN membranes have
been used in a number of cryogenic optomechanical experi-
ments [24,25] and we have shown that fiber cavities can
operate at 4 K (see Supplemental Material [23]).
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