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This Letter investigates a hybrid quantum system combining cavity quantum electrodynamics and

optomechanics. The Hamiltonian problem of a photon mode coupled to a two-level atom via a Jaynes-

Cummings coupling and to a mechanical mode via radiation pressure coupling is solved analytically. The

atom-cavity polariton number operator commutes with the total Hamiltonian leading to an exact

description in terms of tripartite atom-cavity-mechanics polarons. We demonstrate the possibility to

obtain cooling of mechanical motion at the single-polariton level and describe the peculiar quantum

statistics of phonons in such an unconventional regime.
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Cavity quantum electrodynamics (QED) experiments
have explored the light-matter interaction at the quantum
level in atomic physics [1,2]. Spectacular developments
have been achieved as well in circuit QED systems
based on superconducting Josephson junctions [3]. More
recently, quantum optomechanical realizations have
coupled cavity photons to mesoscopic mechanical resona-
tors [4–6]. In superconducting circuits, strong coupling and
control of the mechanical motion at the quantum level have
also been demonstrated [7]. Today, the maturity of solid-
state quantum devices appears thus promising to bridge
QED and optomechanics. The physical interaction at play
in QED results in a resonant coupling linear in the photon
field operators (Jaynes-Cummings Hamiltonian), while in
optomechanics a nonlinear radiation pressure term couples
two off-resonant photonic and mechanical modes. A rich
physics is expected in systems that would merge these
distinct physical features.

The basic principle of inserting a two-level artificial
atom in an optomechanical setting was discussed in clas-
sical terms for fine-tuning of dispersive and dissipative
optomechanical interactions [8]. The coupling of an opto-
mechanical cavity to an atom motion [9] or to collective
excitations of an ensemble of atoms [10] was also dis-
cussed, resulting in the physical situation of two linearly
coupled harmonic oscillators. In that case, the anharmonic
internal structure of a single atom and its corresponding
nonlinear dynamics, a key feature of cavity and circuit
QED, is absent. Since optomechanical systems progres-
sively move towards regimes where single-photon
coupling exceeds dissipation [11–17], a growing interest
is emerging for hybrid systems where artificial atoms,
photons, and phonons would all be strongly coupled at
the quantum level.

In this Letter, we investigate the physics of a hybrid
quantum system where a cavity photon mode is coupled to
an artificial two-level atom and to a mechanical resonator.
We describe analytically the polaron excitations of this

tripartite system and determine the dynamics in the presence
of losses and driving. We show atom-assisted cooling of
mechanical motion down to the single atom-cavity polariton
level and reveal unusual mechanical amplification. Last, we
demonstrate the emergence of both strong phonon bunching
and antibunching in such tripartite quantum systems.
As illustrated in Fig. 1, we consider a joint system where

a confined photon mode is coupled both to a two-level
artificial atom and to a mechanical resonator. Our system
combines the usual Jaynes-Cummings (JC) coupling of
cavity (circuit) QED architectures [1] and the nonlinear
coupling of optomechanics [18]. We thus consider the total
Hamiltonian (@ ¼ 1):

Ĥtot ¼ !câ
yâþ!a

2
�̂z þ igacð�̂þâ� �̂�âyÞ

þ!mb̂
yb̂� gcmâ

yâðb̂þ b̂yÞ; (1)

where �̂x;y;z are Pauli matrices for the two-level system

(�̂� being the ladder operators) and â (b̂) is the

FIG. 1 (color online). Scheme of the considered hybrid sys-
tem. A photon confined mode of frequency !c couples both to a
two-level system (!a is the transition frequency) and to a
mechanical resonator of frequency !m. gac (gcm) is the coupling
strength of the Jaynes-Cummings (radiation pressure) atom-
cavity (cavity-mechanics) coupling.
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annihilation operator for the photon (mechanical) mode
of frequency !c (!m). gac and gcm are the atom-cavity
and optomechanical coupling strengths, respectively.
Replacing the radiation pressure coupling with a direct
coupling between the atom and the mechanical oscillator

of the form / �̂zðb̂þ b̂yÞ yields qualitatively a similar
physics, and this case will hence not be considered further
below.

The system evolves in a discrete but infinite Hilbert
space in which the uncoupled (gac ¼ gcm ¼ 0) eigenvec-
tors are labeled as je; gi � jki � jli: jgi (jei) describes the
ground (excited) state of the two-level system, k the Fock
state with k 2 N photons in the cavity, and l the state with
l 2 N phonons in the mechanical resonator. For gac � 0
and gcm ¼ 0, one has the standard configuration of cavity
(circuit) QED, where atom-cavity polaritons are the new
eigenstates of the system. For gcm � 0, there are new
eigenstates for the hybrid tripartite system, which we will
call atom-cavity-mechanics polarons.

A key feature of the above Hamiltonian is the conserva-

tion of the polariton number N̂polariton ¼ âyâþ �̂þ�̂�.
The problem can thus be diagonalized in each subspace
H n containing exactly n polaritons. In the resonant case

(!a ¼ !c), the polariton-phonon basis fj�ðnÞi � jlig diag-
onalizes the JC part of the Hamiltonian ĤJC ¼ !câ

yâþ
!a

2 �̂z þ igacð�̂þâ� �̂�âyÞ, where j�ðnÞi ¼ ð1= ffiffiffi

2
p Þ�

ðjg; k ¼ ni � ije; k ¼ n� 1iÞ are the n-polariton eigen-

vectors of the JC ladder. Namely, we have ĤJCj�ðnÞi ¼
!ðnÞ

� j�ðnÞi with !ðnÞ
� ¼ ½ðn� 1=2Þ!c � �ðnÞ

2 � and �ðnÞ ¼
2

ffiffiffi

n
p

gac. The system total Hamiltonian being block diago-
nal in this new basis, the mechanical resonator couples
independently to each polaritonic subspace associated to
H n, as illustrated in Fig. 2(a). Hence, we can express it as
follows:

Ĥtot ¼
X

n2N

�

ðn� 1=2Þ!c1
ðnÞ þ�ðnÞ

2
�̂ðnÞ

z

� gcm

�

1

2
�̂ðnÞ

x þ
�

n� 1

2

�

1ðnÞ
�

ðb̂þ b̂yÞ
�

þ!mb̂
yb̂;

(2)

where 1ðnÞ is the identity in the H n Hilbert subspace and

�̂ðnÞ
x;z are Pauli matrices acting on the polaritonic doublet

j�ðnÞi. The radiation pressure coupling has two conse-
quences. First, an effective coupling appears between

each of the two cavity polariton states j�ðnÞi and the
mechanical mode. Second, each of the two states con-
tains on average n� 1=2 cavity photons that displace
statically the equilibrium position of the mechanical
resonator.

In eachH n we can absorb the static displacement of the
mechanical resonator by introducing the new displaced

operator b̂n and make a rotating wave approximation to
obtain the following Hamiltonian in H n:

ĤðnÞ ¼ �ðnÞ

2
�̂ðnÞ

z þ!mb̂
y
n b̂n � gcm

2
ð�̂ðnÞ� b̂yn þ �̂ðnÞ

þ b̂nÞ

� gcm

ffiffiffi

2
p
2

qðnÞ0 �̂ðnÞ
x þ

�

!ðnÞ
0 �!m

2
qðnÞ

2

0

�

1ðnÞ; (3)

where qðnÞ0 ¼ ffiffiffi

2
p

gcmðn� 1=2Þ=!m is the normalized dis-

placed mechanical equilibrium position. The term propor-

tional to �̂ðnÞ
x in Eq. (3) will be neglected hereafter in the

limit gcm � !m. Its perturbative effect could be accounted
for in an exact treatment of the Rabi model [19] but at the
expense of losing explicit expressions for the eigenstates.
Apart from the last term, which is a constant energy shift,
we have an effective Jaynes-Cummings-like Hamiltonian,

which can be diagonalized by the states j�ðn;mðnÞÞi, where
mðnÞ is the polaron number of the tripartite system and n is
the polariton number previously defined. The energy spec-

trum of Ĥn is given by the expression

ĤðnÞj�ðn;mðnÞÞi¼!ðnÞ
0 �!m

2
qðnÞ

2

0 þ
�

m�1

2

�

!m��ðn;mÞ; (4)

where

�ðn;mÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

�ðnÞ �!m

2

�

2 þmðnÞ

4
g2cm

s

: (5)

Figure 2(b) shows the structure of the energy spectrum
for n ¼ 0, 1, 2. For each n-polariton state, a multiplet arises
from the mechanical resonator Fock space. As the mean

(a)

(b) (c)

FIG. 2 (color online). Structure of the polaron eigenstates
for the atom-cavity-mechanics tripartite system. (a) Each
n-polariton subspace (left) couples independently to states of
the mechanical resonator with different displacements (right).
(b) Energy spectrum for n � 2. (c) Zoom on the energy levels in
the H 1 subspace (one-polariton states).
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number of photons n� 1=2 increases, the anharmonicity
of the system becomes more pronounced within each
multiplet. For illustrative purposes, Fig. 2(c) depicts in
detail the anharmonic spectrum of the n ¼ 1 multiplet.

Having understood the nature of the dressed polaron states,
we can consider the dynamics of the open system in the
presence of losses and when coupled to a bath at temperature
T. Within a Lindblad approach for the dissipation, the density
matrix �̂ of the system follows the master equation

d�̂ðtÞ
dt

¼ �i½Ĥtot þ V̂pðtÞ; �̂� þ �acL½â��̂þ �acL½�̂���̂
þ nth�mL½b̂y��̂þ ðnth þ 1Þ�mL½b̂��̂; (6)

where �m (�ac) is the phonon (polariton) loss rate, nth
is the thermal mean phononic occupancy, V̂pðtÞ ¼
iFpðâyei!pt � âe�i!ptÞ is a coherent pump term with

frequency !p, and L½ô��̂ ¼ ô �̂ ôy � 1
2 ðôyô �̂þ�̂ôyôÞ

for any given jump operator ô.
For strong enough light-matter coupling, the anharmo-

nicity of the polaritonic energies is known to give rise to
photon blockade effects [20]. In the following, we consider
only a moderate pumping regime in which one cavity
photon and hence one single polariton is excited at most.
This allows us to understand the physics in terms of the
subspaces H n with n � 1 and hence to consider only

transitions within the set of states fj�ðn;mðnÞÞign2½0;1� (note:
the numerical solutions actually include states with a
higher number n; the validity of such an approximation
has been carefully checked). In the figures of this Letter,
unless otherwise stated, we will always consider the fol-
lowing parameters: !c=!m ¼ 102, !a ¼ !c, gac=!m ¼
1=2, gcm=!m¼10�1, Qm¼!m=�m¼104, Qac ¼
!a;c=�ac ¼ 104, Fp=�ac ¼ 1, and nth ¼ 3:45.

We initially prepare the system in the state jg; k ¼ 0i�
hg; k ¼ 0j � �̂m (no photons in the cavity, the atom in the
ground state and an arbitrary mechanical state) and pump it
with photons having an energy close to the energy differ-
ence between the one-polariton and zero-polariton states,
as can be seen in Fig. 2(b). In the single-polariton regime

considered here, the polaritonic splitting �ð1Þ is tuned to
about the mechanical frequency !m in order to make
resonant the processes in which a phonon is annihilated
(created), thus giving rise to cooling (amplification) of
mechanical motion. These processes can be selected opti-
cally by a proper tuning of the pump frequency !p.

Figure 3 presents the joint spectral density of polaronic
states defined as follows:

D½!� ¼ X

s0 ;s¼�
m0 ;m2N

jhs0ð1;m0ÞjV̂pjsð0;mÞij2�ð!� ð!
s0ð1;m0 Þ �!sð0;mÞ ÞÞ:

(7)

For clarity in Fig. 3, we have convoluted the spectral
joint density with a Lorentzian of width �ac both for the

main panel and for the inset. D½!� shows a series of
resonances corresponding to polaronic transitions where
the number of phonons is either conserved, reduced, or
increased. The main panel shows D½!� for gcm=!m ¼
10�1 displaying two spectral structures centered on the

lower (upper) polariton energy !ð1Þ� (!ð1Þ
þ ). Each structure

is itself split into a doublet with a splitting�gcm. The inset
in Fig. 3 shows D½!� for a weaker optomechanical cou-
pling gcm=!m ¼ 10�3. In this case the polaronic fine
structure splitting �gcm is no longer visible at a scale

�!m, and D½!� presents only two resonances at !ð1Þ
� .

The resonances around !ð1Þ� correspond to transitions for
which the number of phonons decreases (blue peaks) or is

conserved (green peak), and those around !ð1Þ
þ correspond

to processes increasing the number of phonons (red peaks).
Figure 4(a) presents the dynamical behavior of the

mechanical mode coupled to the polaritonic atom-cavity

system under optical pumping close to !ð1Þ� (cooling con-
dition), for the set of parameters of Fig. 3, main panel. It
presents the number of phonons and photons as a function
of time (pump switched on abruptly at t > 0, inducing an
early transient regime). As the number of photons in the
cavity approaches a stationary state, the number of
phonons steadily decreases with an effective dissipation
constant �eff ’ 18�m towards an asymptotic value nmin �
1=10. The dependence of �eff and nmin on the pump
frequency !p shows a good fit with the transitions

described by D½!� (not shown here). By numerically find-
ing the stationary solution of Eq. (6), it is possible to study
the system statistics in the stationary regime (t ! þ1).
Figure 4(b) presents the stationary second-order autocor-

relation function G2 ¼ hb̂yb̂yb̂ b̂i=hb̂yb̂i2 as a function of
the pump frequency. When the transitions around the lower

polariton energy are excited (here!ð1Þ� ¼ !c �!m=2), the
mean phonon occupancy is reduced as previously men-
tioned and the statistics of the mechanical oscillator is
drastically changed, leading to strong phonon bunching

FIG. 3 (color online). Optical joint spectral density of polar-
onic states describing transitions between the states with 0 and 1
polaritons. Main panel: gcm=!m ¼ 10�1, Qac ¼ 104. Inset:
gcm=!m ¼ 10�3, Qac ¼ 106. For clarity, we present only tran-
sitions between states with mðnÞ � 5 polarons. Blue, green, and
red peaks represent transitions reducing, conserving, and in-
creasing the number of phonons, respectively.
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G2 � 5. The solid line represents the values of G2 for the
equivalent atomless system (gac ¼ 0). The changes on G2

in this scenario are much weaker (�10�2), showing that
the presence of the two-level atom is crucial for entering
this strong phonon bunching regime. Figure 4(c) reports
the stationary number of phonons as a function of !p for

the set of parameters of the inset in Fig. 3, showing both
cooling and amplification as the optical pump resonates
with the polaritonic levels. The solid line represents the

evolution of hb̂yb̂iðþ1Þ for the corresponding atomless
scenario (gac ¼ 0), the other parameters remaining the
same. In this case, the cooling mechanism is hindered by
the nonresonant pumping, and no phonon population
change is in practice visible. In the case considered in
Fig. 4(c), the insertion of the two-level atom in the opto-
mechanical cavity strongly boosts the cooling of mechani-
cal motion through a doubly resonant process.

We nowmove to situations where phonon amplification or
emission can occur under pumping of the hybrid atom-
optomechanical system. Figure 5 exhibits the phonon statis-
tics (with a zero-temperature bath) for different polariton
pumping regimes. Figures 5(a) and 5(b) correspond to a
coherent pump whose frequency has been set close to the
upper-polariton energy. This pump detuning leads to the
appearance of nonclassical statistics for the mechanical

motion as shown in Fig. 5(b), where the mechanical Wigner
function acquires negativevalues (represented by a black ring
in the density plot) [21]. Describing this behavior analytically
appears quite involved. We checked, however, that the pres-
ence of the atom is mandatory to obtain this nonclassicity for
the considered set of parameters (see Supplemental Material
[22]). We also checked that a finite temperature for the
phonon bath progressively destroys the negativity of the
Wigner function. In some cases, interesting analogies can
be drawn between this polariton-assisted amplification of
motion and the situation of a single-atom laser [23]. These
analogies are addressed in Supplemental Material [22].
If we now consider the case of an incoherent pumping

of the one-polariton states [described by adding

FincðL½jþð1Þihg; 0j��̂þ L½j�ð1Þihg; 0j��̂Þ and setting Fp ¼
0 in Eq. (6)], the phonon statistics can be described through
an analytical approach [22,23]. As shown in Fig. 5(c), the
incoherent pump populates the excited polaritonic states
which, in the eigenbasis of the Hamiltonian, leads to excita-
tion of polarons and then emission of phonons. Figure 5(d)
shows that forweak incoherent pumping the anharmonicity of
the polaronic states yields sub-Poissonian statistics (G2 � 1)
for the emitted phonons. The analytical results (circles) are in
excellent agreement with the numerical results.

(a) (b)

(c)

FIG. 4 (color online). Atom-assisted optomechanical cooling.
(a) Time evolution of the number of photons (red) and phonons
(blue) for an initial mechanical state jl ¼ 2i. (b) Phonon second-
order correlation function G2 of the stationary state.
(c) Stationary number of phonons as a function of !p for Qm ¼
106,Qac ¼ 106, gcm=!m ¼ 10�3, and Fp=�ac ¼ 100. In (b) and

(c), the dashed blue lines represent the hybrid QED-
optomechanics case with an atom (gac � 0), while the black
solid lines correspond to the usual atomless scenario (gac ¼ 0).
The inset in (c) depicts schematically the doubly resonant polar-
iton cooling of motion.

(a) (b)

(c) (d)

FIG. 5 (color online). Steady-state mechanical resonator sta-
tistics (bath at zero temperature). (a) Real part of the mechanical
reduced density matrix and (b) the corresponding Wigner func-

tion for an optical coherent pump tuned to ð!p �!ð1Þ
þ Þ=!m ¼

10�1. (c) Phonon occupation number and (d) second-order
correlation function G2 under incoherent pumping as a function
of the polariton quality factor Qac. The incoherent pump rate is
set to Finc ¼ �ac. Black solid, blue dashed, and red dotted lines
correspond to numerical results for Qm ¼ 101, 102, and 103,
respectively. The analytical solutions of the master equation are
represented by circles.
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In conclusion, we have proposed a hybrid system where
a mechanical resonator is coupled to a cavity (circuit) QED
system embedding a single artificial two-level atom. The
physics of the system can be described in terms of atom-
cavity-mechanics polarons. In the presence of losses, we
have focused on the single-polariton optomechanics and
shown that an artificial two-level atom can enhance single-
photon cooling by orders of magnitude and lead to strong
bunching of phonons. When the bath of the system is at
very low temperatures, the hybrid configuration leads to
nonclassical statistics of the mechanical motion leading to
negative values of its Wigner function and emission of
single phonons with strong antibunching. These concepts
could be tested on a large set of experimental platforms
spanning from a real single atom trapped in a macroscopic
optomechanical Fabry-Perot cavity resonator to diamond
resonators embedding nitrogen-vacancy centers, defect
centers in silica toroids [24], or semiconductor optome-
chanical systems with built-in artificial atoms. Of peculiar
interest are miniature gallium-arsenide optomechanical
resonators combining strong optomechanical [15,16] with
cavity QED couplings [25] and superconducting systems
where strong coupling circuit QED and quantum control of
gigahertz mechanical motion have been already demon-
strated [7]. These hybrid atom-cavity-mechanics platforms
are not far from existing in laboratories and will allow one
to transfer mature concepts of cavity (circuit) QED to the
realm of mechanical systems.
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