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Using numerical simulations of lattice QCD we calculate the effect of an external magnetic field on the
equation of state of the quark-gluon plasma. The results are obtained using a Taylor expansion of the
pressure with respect to the magnetic field for the first time. The coefficients of the expansion are computed
to second order in the magnetic field. Our setup for the external magnetic field avoids complications arising
from toroidal boundary conditions, making a Taylor series expansion straightforward. This study is
exploratory and is meant to serve as a proof of principle.
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Introduction.—The behavior of the quark-gluon plasma in
the presence of a strong magnetic field is of interest to cos-
mology, astrophysics, and heavy-ion collisions. Shortly
after the big bang, when one of the main components of
the Universe was the quark-gluon plasma, strong magnetic
fields of Oð1016 TÞ and higher may have existed as a result
of the nonequilibrium dynamics of the electroweak phase
transition, generation of topological defects, and other phe-
nomena. (For a review of some of these mechanisms see
Ref. [1].) This could have affected the subsequent structure
formation and evolution of the Universe, since the equation
of state of the plasma could have been modified by these
fields. Very strong magnetic fields are also generated in
the vicinity of magnetars [Oð1011 TÞ] and if these fields
permeate the interior of such a star, they may affect the
state of the high-density hadronic matter in its core and
thus potentially influence the star’s properties such as
its temperature and diameter-to-mass ratio [2]. Currently,
the properties of the quark-gluon plasma are studied at
the LHC, RHIC, and other experimental facilities, and
its equation of state is important in the process of predicting
the features of the particle spectra created in a heavy-ion
collision. In a noncentral heavy-ion collision strong mag-
netic fields are induced by the spectator protons in the
nuclei moving with speeds close to the speed of light
[3]. (There is a smaller contribution from the participant
region.) The almond-shaped volume of the developing
quark-gluon plasma is immersed in this external magnetic
field, which is estimated to be of Oð1015 TÞ. It appears that
if such a strong magnetic field modifies the properties of
the plasma, the particle spectra produced might also be
affected.
In this Letter we attempt to calculate the effect of a strong

external magnetic field on the pressure of the quark-gluon
plasma. We use a Taylor expansion method and calculate
the contribution to the pressure up to a second order in the
field. At lower temperatures we compare with the pressure
calculated using the hadron resonance gas (HRG) model
[4]. This Letter is organized as follows: The first section

presents the particulars of introducing an external magnetic
field on a torus, both in the continuum and on a discrete
lattice. We give our preferred way of dealing with them.
In the next section, the Taylor expansion method for the
pressure is described. The final section gives our results
and conclusions.

Magnetic field on a torus.—The introduction of a constant
magnetic field on a (continuum space) torus leads to pecu-
liar requirements such as the quantization of the magnetic
flux and breaking of translational invariance to a discrete
group [5]. In other words, if the torus is of size Lx × Ly
then the magnetic field B in the ẑ direction should have
the magnitude B ¼ ð2πbÞ=ðjqjLxLyÞ, b ∈ Z. This relation
follows from the requirement for (1) gauge invariance of
the wave function of a particle with charge of magnitude
jqj under shifts of size Lx and Ly and (2) the periodic boun-
dary conditions in both the x̂ and ŷ directions. In Ref. [5] it
is also shown that the Polyakov loops are not translationally
invariant in the x̂ and ŷ directions, unless the translation is
done by shifts which are integer multiples of ax ¼ Lx=b
and ay ¼ Ly=b.
The lattice representation of space-time is usually a dis-

cretized torus; thus, all of the quantization rules described
above are applicable in this case, albeit in their even more
restrictive discretized version. It follows that the magnetic
field on the lattice (choosing B in the ẑ direction again)
is quantized as jejB¼ ð6πba−2Þ=ðLxLyÞ, 0 < b < LxLy=2,
where b is an integer. The meaning of Lx and Ly is changed
to be the number of lattice points in the x̂ and ŷ directions,
and a is the lattice spacing. The additional factor of 3 in
the numerator originates from the fractional quark charges,
the smallest of which is −jej=3 and thus determines the
quantum of the magnetic field. The maximum value of
the integer b ¼ LxLy, due to the finite dimensions of the
lattice, is divided by a factor of 2, since measurements
on the lattice will typically show a symmetry with respect
to the midlattice points, and this further restricts the number
of physically different values for b. If B is not quantized, at
minimum there is one corner plaquette where the magnetic
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flux through it is equal in magnitude to the magnetic flux
through the rest of the lattice and opposite in direction:
Φcorner ¼ −BðLxLy − 1Þa2, modulo the magnetic quantum.
This is natural since without quantization, the net flux
through the x̂-ŷ surface must be zero (i.e., the flux lines
going into the surface inevitably have to reappear out of
the surface at some corner of the lattice).
The magnetic field setup described above is not well

suited for a calculation using a Taylor expansion method
of a bulk thermodynamic quantity. In order to obtain the
Taylor expansion coefficients, we need to take derivatives
with respect to the magnetic field. But taking a derivative
with respect to a quantized quantity (in this case the mag-
netic field) is not straightforward to implement or interpret.
If we decide to ignore the quantization of B and treat it as a
continuum variable, the corner plaquette with a large mag-
netic flux dominates the bulk observables and completely
skews the physics. This happens because bulk observables
are sums over the whole lattice volume, and the corner pla-
quette cannot be simply excluded from that sum. (There are
cases where the corner plaquette “defect” is of less impor-
tance, such as when particle propagators are calculated at a
“safe” distance away from it, since they may not involve a
sum over the whole lattice [6].)
These difficulties prompted us to change the magnetic

field configuration from the above setup to one where
the magnetic field is in the ẑ direction on one half of
the lattice and in the −ẑ direction on the other half
(for brevity we call it the “half-and-half setup”). The
obvious advantage is that we don’t need to quantize
the magnetic field, because the flux from one half of the
lattice comes out from the other without being large for
any size of closed loop on the lattice. Thus the application
of the Taylor expansion method becomes straightforward
for thermodynamic quantities. In addition, with our method
the pressure is isotropic, since derivatives of the partition
function are taken at a constant, nonquantized external
magnetic field (for a discussion of pressure anisotropies,
see Ref. [7]).
We do not expect that the thermodynamics of the system

is much affected by the fact that the magnetic field changes
direction in the middle and the end of the lattice, as long as
the spatial volume is suitably large. Generally, the pressure
and energy density should not depend on the field direction,
and if the two lattice halves are thermodynamically large,
the surface defects introduced in the middle and the end
of the lattice should have a small effect on the final results.
But of course for finite lattices, the effective halving of
the spatial volume may lead to increased finite volume
effects [probably of Oð1=LsÞ], which should be estimated
by comparing results on different lattice volumes.
The realization of the half-and-half setup we work with

has the Uð1ÞEM links as uŷðB; q; XÞ ¼ eia
2qBx0 , with x0 ¼

x − Lx=4 for x ≤ Lx=2 and x0 ¼ 3Lx=4 − x for x > Lx=2;
ux̂;ẑ;t̂ðB; q; XÞ ¼ 1. This choice defines particular values

of the link phases (i.e., the vector potential values) symmet-
ric with respect to the midlattice points. In fact, any choice
of the phases such that they increase by an additional ia2qB
in the x̂ direction at each lattice point on half of the lattice
and decrease by that amount on the other half, constitutes a
valid half-and-half magnetic field setup. However, the dif-
ferent choices are not gauge equivalent. They give different
values of Polyakov loops in the ŷ direction, leading to small
differences in physical observables; but those differences
should vanish at infinite volume. The phase choice has
proven to have a large effect on the stochastic noise in
the measured observables. The Taylor expansion coeffi-
cients of the pressure can be thought of as sums of n-point
lattice loops with insertions (multiplication) of the phases.
For a particular loop the sum over all such insertions is
gauge invariant, and therefore requires cancellations among
the noisy gauge-specific terms, when they are estimated
using random vectors. Since the subtraction between the
terms in the loop is stochastic, the smaller the magnitudes
of these link phases, the less noise is introduced in the
measurement.
It can be easily seen that the phase configuration we

work with (defined up to a constant lattice translation)
fulfills all the above conditions (i.e., both symmetry and
small magnitude of the phases), and minimizes the noise.
This “minimal-noise” choice of the vector potential on the
lattice, decreases the standard deviation by a sizable factor
in the measurement of the second order Taylor coefficient
in comparison with other choices.

Taylor expansion of the pressure with respect to the magnetic
field.—As explained in the previous section, the half-and-
half configuration for the magnetic field frees us from
the necessity to quantize the magnetic field. Thus a
Taylor expansion of various thermodynamic variables is
straightforward. The direction of the magnetic field should
not affect the pressure, which is a CP invariant. Moreover,
the setup of the magnetic field that we use is explicitly CP
invariant, so we know that the odd-order Taylor expansion
coefficients of the pressure are zero. (But a CP-even result
also should be expected if we used a magnetic field con-
figuration, where the field is quantized and points only in
one direction.)
To calculate the Taylor expansion coefficients of the

pressure, we chose a method similar to the one used to
obtain them in the case of an expansion with respect to
a nonzero chemical potential [8]. One crucial difference
from the nonzero chemical potential case is that here we
may need to renormalize some of the Taylor expansion
coefficients. This is due to the UV divergence in the
QCDþ QED theory which is of second order in the exter-
nal magnetic field and which in principle can be absorbed
in the electric charge renormalization. (See Ref. [4] for a
discussion in the context of the HRGmodel.) On the lattice,
unless the operators we work with are somehow renormal-
ized and have noOðB2ÞUV divergence by construction, we
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need to cancel this divergence by subtracting, for example,
an appropriate zero-temperature correction. In the Taylor
expansion method for the pressure, only the second order
coefficient contains the OðB2Þ UV divergence; hence, it is
the only term in need of a zero temperature correction. Still,
this increases the computational cost. On the other hand,
generating zero- and nonzero-temperature gauge ensembles
with explicit background magnetic fields [9] is generally
costlier (at least when compared with a calculation up to
the second order in the Taylor expansion), while here we
can use preexisting ensembles generated with B ¼ 0.
Another important difference with the nonzero chemical

potential case is that the QCD vacuum is modified by the
presence of the magnetic field (but not of the chemical
potential) and the pressure is nonzero even at zero temper-
ature. This vacuum pressure is a nonthermal contribution to
the whole pressure, and its lowest order is OðB4Þ. Hence,
theOðB2Þ coefficient in the expansion of the pressure (after
renormalization) should be zero at zero temperature, while
the higher order coefficients will have nonzero values.
In other words, the second order coefficient has an
entirely “thermal” origin and will be nonzero only if the
temperature is nonzero. On the other hand, the fourth
and higher order coefficients have both vacuum and ther-
mal contributions.
In the case of 2þ 1 staggered-type quark flavors, the

Taylor expansion of the pressure p at temperature T with
respect to the dimensionless parameter jejB=T2 is shown
below (before renormalization):

pðTÞ
T4

¼ ln ZðBÞ
T3V

¼
X∞

n¼0

CnðTÞðjejB=T2Þn;

CnðTÞ ¼
L3
t

L3
s

1

n!
∂n ln ZðBÞ
∂ðjejB=T2Þn

����
B¼0

;

(1)

where the partition function is ZðBÞ ¼ R
dUe−SgeUeDeS,

with U ¼ ln det Muðqu; BÞ=4, D ¼ ln det Mdðqd; BÞ=4,
S ¼ ln det Msðqs; BÞ=4, and Sg is the gluon action. The
charges of the up, down, and the strange quarks are denoted
as qu, qd, and qs. The spatial dimension of the lattice
is Lsð¼ Lx ¼ Ly ¼ LzÞ and the temporal one is Lt. For

simplicity we will set the magnitude of the electron charge
jej ¼ 1 and thus omit it in the following expressions. In the
half-and-half setup for the magnetic field in the ẑ direction,
the fermion matrix for a given quark flavor f ¼ u, d, s is
Mf

X;YðB; qfÞ ¼ amfδX;Y þDẑ;t̂;x̂
X;Y þDŷ

X;YðB; qfÞ, where mf
is the quark mass for flavor f and Dẑ;t̂;x̂

X;Y is a sum of the
Dirac operators in the x̂, ẑ, and t̂ directions at all points.
This term does not explicitly depend on B. The dependence
on B is in the third term only. As noted in the previous
section, we work with the half-and-half magnetic field
configuration, which ensures that the stochastic noise in
the measured observables is minimized. As in Ref. [8],
it is convenient to define the observable:

Anml ¼
1

qnuqmd q
l
s

�
e−Ue−De−S ∂neU

∂ða2BÞn
∂meD

∂ða2BÞm
∂leS

∂ða2BÞl
�
:

(2)

We work with equal u and d quark masses, which means
that the following symmetry holds: Anml ¼ Amnl. It is
straightforward to show that the first two coefficients in
the pressure expansion [after C0ðTÞ, which is the pressure
at B ¼ 0] are

C1ðTÞ ¼
Lt

L3
s
½ðqu þ qdÞA100 þ qsA001�; (3)

C2ðTÞ¼
1

2LtL3
s

h
ðq2uþq2dÞA200þq2sA002þ2quqdA110

þ2ðquþqdÞqsA101−
�
L3
s

Lt
C1

�
2
�
: (4)

The explicit forms of the Anml’s used in the above are easy
to obtain from Eq. (2). We calculate the necessary Anml’s
stochastically using a number of random Gaussian sources
for each lattice configuration. For more details, such as the
parameters of the lattice ensembles and number of sources,
see Table I. As explained at the beginning of the section, we
need to subtract the zero-temperature corrections from the

TABLE I. Parameters of the ensembles in this study and the number of Gaussian random sources (#RS) used on each configuration at
zero and nonzero temperature T. The number of gauge configurations is 50 for each ensemble and temperature, except for the β ¼ 6.46
and 6.423 (for the larger volume), where they are 60 and 70 at T ¼ 0, respectively.

T [MeV] β ml=ms VT≠0 VT¼0 #RST≠0 #RST¼0 Cr
1 × 10−4 Cr

2 × 10−3

134 6.195 0.00440/0.0880 323 × 8 323 × 32 2400 400 1(5) −0.3ð5Þ
154 6.341 0.00370/0.0740 323 × 8 323 × 32 2400 500 6(5) 0.4(4)
167 6.423 0.00335/0.0670 323 × 8 323 × 32 1200 200 −8ð4Þ 2.18 (53)
167 6.423 0.00335/0.0670 483 × 8 483 × 48 1200 400 −4ð3Þ 2.28 (51)
173 6.460 0.00320/0.0640 323 × 8 323 × 64 1200 200 −8ð6Þ 3.81 (55)
227 6.740 0.00238/0.0476 323 × 8 483 × 48 1200 200 −1ð2Þ 10.4 (0.8)
373 7.280 0.00142/0.0284 323 × 8 483 × 64 1200 40 1(1) 19.3 (1.3)
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second order Taylor coefficient. Thus we have: Cr
1ðTÞ ¼

C1ðTÞ and Cr
2ðTÞ ¼ C2ðTÞ − C2ð0Þ, where the superscript

r denotes a renormalized observable.
Results and conclusions.—For this exploratory work we

employ (2þ 1)-flavor lattice ensembles generated by the
HotQCD Collaboration using the HISQ/tree action
(at B ¼ 0) along a line of constant physics with ml=ms ¼
0.05 [10], the parameters of which are given in Table I.
The high-temperature ensembles have Lt ¼ 8 and encom-
pass temperatures between 134 and 373 MeV (the temper-
ature scale is as in Ref. [10]). To calculate the necessary
observables from Eqs. (3) and (4), we use Gaussian random
sources, the number of which is also given in Table I.
The computational cost for the whole calculation is around
30 000 GPU hours using QUDA [11].
In the last two columns of Table I, the results for Cr

1 and
Cr
2 are presented. As expected, C

r
1 is compatible with zero

at any temperature. Hence, the first nontrivial contribution
to the pressure is coming from the second order coefficient
Cr
2, which can be interpreted as the magnetic susceptibility

of the quark-gluon plasma. In the left panel of Fig. 1 we
examine its behavior: it shows an increase with T in the
temperature region studied. The magnetic susceptibility
Cr
2 is positive for temperatures above the transition, which

means that the quark-gluon plasma exhibits a paramagnetic
behavior to lowest (linear) order in the magnetic field.
Paramagnetism in the quark-gluon plasma has been also
previously found in other lattice studies [7,9].
The values ofCr

2 at the two lowest available temperatures
(134 and 154 MeV) are compatible with zero, and clearly
require more statistics for their determination. Moreover,
these points are most likely to be affected by the lattice
cutoff since they have coarser lattice spacings. We also tried
to estimate the finite volume effects by recalculating Cr

2

at T ¼ 167 MeV on a larger spatial volume of 483 for
both the zero- and nonzero-temperature ensembles. The red

empty circle denotes this result, and, as one can see, the
finite volume effects are entirely within the statistical error
of the calculation, since the small and large volume values
are compatible.
In the right panel of Fig. 1 we show the thermal contri-

bution to the pressure due to the presence of an external
magnetic field to second order in the field, i.e., without
the vacuum pressure): Δp ¼ Cr

2ðeBÞ2. We show Δp for
two values: eB ¼ 0.2 and 0.3 GeV2. We compare it with
predictions of the HRG model [4] for the above fields
(also with the vacuum pressure subtracted). Up to about
154 MeV the HRG and our result are roughly compatible
(within large errors), and further studies should refine this
statement. Of course, the HRG values contain terms of
all possible orders, unlike our second-order-only result.
At higher temperatures, the HRG and our results deviate,
which is not surprising.
In light of our findings, it seems that the thermal correction

of the pressure due to the presence of a magnetic field is small
(within a few percent) for fields of Oð1015 TÞ [or equiva-
lentlyOð10−1 GeV2Þ], which are relevant for heavy-ion col-
lision experiments. On the other hand, if in the early Universe
fields reached Oð1016 TÞ [or Oð1 GeV2Þ], this correction in
the studied temperature range becomes large: roughly 20%–
100% (with the larger value corresponding to lower temper-
atures). Of course, the latter statement assumes that using
only the second order coefficient is sufficient to estimate
Δp in the presence of such a large external magnetic field.
In conclusion, in this work we argue for the feasibility

and convenience of the Taylor expansion method for cal-
culating the equation of state of the quark-gluon plasma
in the presence of an external magnetic field. This work
should be expanded in the future to include larger statistics,
study of the finite volume effects at different temperatures,
and contributions of higher orders in the Taylor expansion
of the pressure. Other quantities such as the trace anomaly,
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FIG. 1 (color online). (Left panel) The second order coefficient in the Taylor expansion of p=T4 vs the temperature. The red empty
circle at T ¼ 167 MeV denotes a value calculated at a larger spatial volume in order to check for finite volume effects. (Right panel) The
OðB2Þ thermal contribution to the pressure of the quark-gluon plasma due to the presence of a magnetic field, for two values eB ¼ 0.2
and 0.3 GeV2. The HRG results are from Ref. [4].
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energy density, effects on the chiral condensate, etc., can
also be studied in this way with suitably higher statistics.
(Results for some of these quantities obtained with other
methods can be found in Refs. [7,9,12].)
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