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We present a new formalism, alternative to the old thermodynamic-Bethe-ansatz-like approach, for
solution of the spectral problem of planar N ¼ 4 super Yang-Mills theory. It takes a concise form of a
nonlinear matrix Riemann-Hilbert problem in terms of a few Q functions. We demonstrate the formalism
for two types of observables—local operators at weak coupling and cusped Wilson lines in a near
Bogomol’nyi-Prasad-Sommerfield limit.
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Introduction.—The spectrum of anomalous dimensions in
the planar N ¼ 4 super Yang-Mills theory (SYM) theory
was successfully studied in the last decade, to great extent
due to the ideas of AdS/CFT correspondence and integra-
bility [1]. A conventional form of solution to the spectral
problem is given by an infinite set of nonlinear integral
thermodynamic-Bethe-ansatz (TBA) equations [2–4] for
the functions of the spectral parameter Ya;sðuÞ

logYasðuÞ¼ δ0siLpaðuÞþ
Z

dvKa0s0
as ðu;vÞ logð1þYa0s0 ðvÞÞ

where the sum over a0, s0 in the rhs goes along the internal
nodes of the lattice (T hook) in Fig. 1. The momentum pa
and the kernels Ka0s0

as are explicit but rather complicated
functions of the spectral parameters u, v [3]. Their
important analytic feature is the presence of cuts, parallel
toR, with fixed branch points at u, v ∈ �2gþ iZ or u; v ∈
�2gþ iðZþ 1

2
Þ where g≡ ffiffiffi

λ
p

=ð4πÞ and λ is the ’t Hooft
coupling. This TBA system completely fixes the Y func-
tions and, hence, the dimension of a particular operator
specified by certain poles and zeros incorporated into the
driving terms [3]. It was successfully used for the weak
and strong coupling analysis [5–7] as well as for the
first successful numerical computations of dimensions of
Konishi [8,9] and similar operators [10,11]. However, this
TBA system has very complex analyticity properties, which
limits in practice its applications and obscures the long
anticipated beauty of the whole problem.
An obvious sign of this hidden beauty is the direct

equivalence of the TBA system to the AdS/CFT Y system,
originally proposed as a solution of the AdS/CFT spectral
problem in Ref. [12], with additional analyticity conditions
[13]. It is a universal set of equations equivalent, by the
substitution Ya;s ¼ ðT sþ1;aT s−1;aÞ=ðTaþ1;sTa−1;sÞ, to the
Hirota discrete bilinear equation (T system) [14,15]

Tþ
a;sT−

a;s ¼ Taþ1;sTa−1;s þ Ta;sþ1Ta;s−1; (1)

which is integrable in its turn. With the use of this
integrability, the general solution of the T system can be
explicitly parametrized in terms of Wronskians built from
only eight independent Q functions [16,17]. The Q
functions are the most elementary constituents of the whole
construction with the analyticity properties much simpler
than those of Y or T functions [18]. With a savvy choice of
the basic Q functions, we managed in Ref. [18] to close a
finite system of nonlinear integral equations (FINLIE). It
appeared to be a very efficient tool in multiloop weak
coupling computations [19,20]. But it was clear that the
somewhat bulky form of that FINLIE [18] hides a much
more beautiful and simple formulation, with a clear insight
into the full analytic structure of the underlying functions.
We formulate in this note a new, much more transparent

and concise system of the planar AdS5=CFT4 spectral
equations of the Riemann-Hilbert type. It might represent
the ultimate simplification of this spectral problem.

Pμ system for the spectrum.—We will demonstrate our new
approach on the most important example of the left-right
symmetric states for which Ta;s ¼ Ta;−s (in the appropriate
gauge described in Ref. [18]). To start with, all T and Y
functions can be expressed in terms of 4þ 4 Q functions
[17]. Let us exemplify this relation for T functions of the
right band (see Fig. 1), where we have for s > 0 [18]

FIG. 1. T hook: lattice for the AdS/CFT T system.
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T1;s ¼ P½þs�
1 P½−s�

2 − P½þs�
2 P½−s�

1 ; (2)

where the symbol P is used to denote theQ functions in the
right band, to avoid a clash with other notations existing in
the literature. An important feature of this parametrization
is that P’s have only one single cut between −2g and 2g,
otherwise being analytic in the whole complex plane [18].
This property is tightly related to what we refer to as Z4

symmetry [18,21,22].
Ideally, we would like to reduce the whole problem to a

single spectral curve or a Riemann surface on which all Q
functions are defined. For that we need to know in
particular the analytic continuations of P1 and P2 through
the cut which we denote as ~P1, ~P2. Quite expectedly, ~P1, ~P2

have an infinite “ladder” of cuts, with branch points at
�2gþ in for any integer n. To describe completely the
Riemann surface, one should know the analytic continu-
ation through any of those new cuts and so on. One of the
main results of this note is that this complicated cut
structure has a stunningly simple algebraic description.
Namely, after inspecting the properties of Q functions of

Ref. [18], we managed to construct [23] two additional
functions P3 and P4, again with only one single cut, such
that after the analytic continuation the four functions
~Pa; a ¼ 1, 2, 3, 4 can be expressed as linear combinations
of the initial P’s

~Pa ¼ −μabχbcPc (3)

where χ is the antisymmetric constant 4 × 4 matrix with
the only nonzero entries χ23 ¼ χ41 ¼ −χ14 ¼ −χ32 ¼ 1
and μab is a 4 × 4 antisymmetric matrix constrained by

μ12μ34 − μ13μ24 þ μ214 ¼ 1; μ23 ¼ μ14; (4)

~μabðuÞ ¼ μabðuþ iÞ: (5)

Equation (5) is a very peculiar pseudoperiodicity condition
(see Fig. 2. It tells us that if we define a function μ

^
such that

it coincides with μ in the strip 0 < Imu < 1 but has all its
cuts going to infinity then μ

^
is a truly i-periodic func-

tion: μ
^

abðuþ iÞ ¼ μ
^

ab.
To close the system of equations on P, μ we have to find

a condition on μab similar to Eq. (3). An important part of it

is already dictated by Eq. (3): since the branch points are

quadratic, we have ~~Pa ¼ Pa; which leads to P ¼ − ~μχ ~P.
This, together with Eq. (3), gives a set of linear equations
fixing the discontinuity of the matrix μ up to a single
unknown factor eðuÞ: ~μab − μab ¼ eðuÞðPa

~Pb − ~PaPbÞ.
We argue below that eðuÞ ¼ 1 and, hence,

~μab − μab ¼ Pa
~Pb − Pb

~Pa: (6)

Equations (3), (5), and (6) represent our main result—a
complete nonlinear system of Riemann-Hilbert equations
for the AdS/CFT spectral problem. They allow us to walk
through the cuts to any sheet (out of infinite number) of the
Riemann surface of the functions P and μ. In this sense,
they give the full description of the spectral curve of the
problem. Indeed, by means of Eqs. (3) and (5) it is easy to
walk through the central cut in Fig. 2. The other cuts are
present only in μ. To define the analytic continuation
through them, we use a combination of Eqs. (3), (5),
and (6),

μabðuþ iÞ ¼ μab − PaPeχ
ecμcb − PbPeχ

ecμac; (7)

which allows us to recursively express μabðuþ inÞ through
μabðuÞ and shifted P’s—the quantities with known mono-
dromies. We refer to this new formulation of the spectral
problem, given by Eqs. (3)–(6), as the Pμ system.
Let us argue now that P and μ contain the complete

information about the initial Y system. Indeed, from Eq. (2)
we restore T 1;s for s > 0. Furthermore, T 2;s ¼ T ½þs�

1;1 T ½−s�
1;1 ,

T0;s ¼ 1, and with a help of one extra relation T3;2 ¼
T2;3μ12 (see Ref. [18], where F− ¼ μ12) we have just
enough information to recover any Ta;s using solely the
Hirota Eq. (1), for any left-right symmetric state. It is just a
matter of elementary algebra to write any Y function
explicitly through P, μ. In particular, we find

Y11Y22 ¼ 1þ P1
~P2 − P2

~P1

μ12
¼ μ12ðuþ iÞ

μ12ðuÞ
: (8)

We note that the first equality holds for any eðuÞ, but
imposing [18] ~Y11

~Y22 ¼ 1=ðY11Y22Þ we fix eðuÞ ¼ 1.
Asymptotics and charges.—The quantity of Eq. (8) is

known to contain the energy/dimension Δ of the state in
its large u asymptotics [18]: log Y11Y22 ≃ iðΔ − LÞ=u.
Similarly, the large u asymptotics of P and μ contain the
information about other conserved charges of the state. In
fact, Pþ

a =P−
a is the exact quantum analogue of the S5

eigenvalues of the monodromy matrix [22] of classical
strings moving in AdS5 × S5 and, thus, Pþ

a =P−
a≃

1þMa=ð2iuÞ, where Ma are integer charges of the global
SO(6) symmetry. For instance, in the sl2 sector, i.e., for
spin S twist L operators of the type TrZ∇SþZL−1 dual to the
string which is pointlike in S5 and moves there with the
angular momentum L, one has the following asymptoticsFIG. 2. Cut structure of P and μ.
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Pa ≃ ðA1u−L=2; A2u−ðLþ2Þ=2; A3uL=2; A4uðL−2Þ=2Þa: (9)

Note that at odd values of L, Pa have a sign ambiguity.
Next, we also have to specify the asymptotics of μ.

Assuming its powerlike behavior, we immediately get from
Eq. (8) μ12 ≃ uΔ−L. To deduce the asymptotics of the
remaining μ’s, we consider ~P1 ¼ −μ14P1 þ μ13P2 − μ12P3

and assume that all the terms in the rhs scale in the same
way. This gives, e.g., μ13 ∼ μ12uLþ1 ∼ uΔþ1 and, similarly,
ðμ14; μ24; μ34Þ ∼ ðuΔ; uΔ−1; uΔþLÞ. This strategy allows one
to easily determine the asymptotics for any state even
outside of the sl2 sector.
Finally, let us fix the coefficients Ai in Eq. (9). Note that

Eq. (7) becomes at large u value a homogeneous differ-
ential equation on the five independent components of μab.
By plugging into this equation the asymptotics for μab and
Pa, we get a fifth-order algebraic equation on Δ. Its roots
are of the form (�α, �β, 0) where α, β are functions of Ai.
The root α ¼ Δ reproduces the correct asymptotics of μab,
whereas one can show (see a motivation in the Discussion)
that β þ 1 ¼ S is the Lorentz spin of the state. By inverting
these relations one gets

A2A3 ¼
½ðL − Sþ 2Þ2 − Δ2�½ðLþ SÞ2 − Δ2�

16iLðLþ 1Þ ;

A4A1 ¼
½ðLþ S − 2Þ2 − Δ2�½ðL − SÞ2 − Δ2�

16iLðL − 1Þ : (10)

Note that Δ enters Eq. (10) only as Δ2, which suggests that
the function SðΔÞ is even, as claimed in Ref. [24].
Interestingly, Ai enter only through the products (10),
due to the rescaling symmetry: Pa → caPa, μab →
cacbμab with constants ca obeying c1c4 ¼ 1, c2c3 ¼ 1.

Regularity condition.—P-s and μ-s do not have poles on
their defining sheet and, hence, due to Eqs. (3), (5), and (7),
on the whole Riemann surface. The regularity condition
singles out physical solutions of the Pμ system. In practice,
one can identify the physical solutions in the one-loop
approximation, as demonstrated below for the slð2Þ sector,
and then develop the perturbation theory.

Weak coupling in the SLð2Þ sector.—Since Δ ¼ Lþ Sþ
Oðg2Þ in this sector, we see from Eq. (10) that
A2A3 ¼ Oðg2Þ, which also suggests that P2P3 ¼ Oðg2Þ.
The rescaling symmetry allows us to make a convenient
choice P2 ¼ Oðg2Þ for which Eq. (7) simplifies consid-
erably at the leading order: Since P2 ≃ 0, equations for μ12
and μ24 decouple from the rest. Excluding μ24 we get a
second-order difference equation

TQþQ½−2�=ðP−
1 Þ2 þQ½þ2�=ðPþ

1 Þ2 ¼ 0; (11)

where

T ≡ Pþ
4

Pþ
1

− P−
4

P−
1

− 1

ðP−
1 Þ2

− 1

ðPþ
1 Þ2

and

μþ12 ≡QþOðg2Þ:

It is reasonable to assume that singularities from
collision of branch points u ¼ �2gþ iZ do not manifest
themselves at one loop. Hence, let us choose the
maximally analytic ansatz: P4=P1, 1=P2

1, and μ12 should
be polynomials (of degree L − 1, L, and S correspond-
ingly). Leaving the detailed explanation of this assumption
for further publication [25], let us demonstrate that it
allows us to reproduce the full spectrum of the slð2Þ
sector. Note that polynomiality of 1=P2

1 actually means that
P1 ¼ A1u−L=2 þOðg2Þ; otherwise, P1 would be an infinite
Laurent series that cannot be a regular function on other
Riemann sheets at finite coupling. Then Eq. (11) is nothing
but the Baxter equation for the Heisenberg spin chain. This
equivalence can be confirmed further as the zeros of μþ12 are
indeed exact Bethe roots [18].
By standard arguments, regularity implies that zeros ofQ

satisfy Bethe equations, which singles out a discrete set of
possible Q’s and, hence, of solutions of the Pμ system
corresponding to the states from the slð2Þ sector. For AdS/
CFT, we have an additional zero-momentum constraint
Qðþi=2Þ=Qð−i=2Þ ¼ 1, which is due to the cyclicity of
trace. The Pμ system also encodes this constraint. Indeed,
in the limit g → 0, it is nothing but Eq. (5) evaluated at
the branch point u ¼ 2g where we used the analyticity
condition ~μabð2gÞ ¼ μabð2gÞ.
To compute the one-loop energy, we have to compute the

large u asymptotics of μ12 to the next order. From μ12=Q ∼
uΔ−S−L ≃ 1þ ðΔ − S − LÞ log uþOðg2Þ we see that we
have to find the prefactor of the log u term. Such large u
behavior clearly shows that at the next order μ12 can no
longer be a polynomial. Instead, μ12 develops singularities
at the collapsing branch cuts u ¼ in, n ∈ Z in addition to a
modified polynomial part. We denote the singular part of
μþ12 by R. To separate the regular and singular parts we write
μ12 in the following way:

μ12 ¼
�
μ12 þ μþþ

12

2

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − 4g2

q �
μ12 − μþþ

12

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − 4g2

p
�
;

where, due to Eq. (5), both expressions inside the brackets
have a trivial monodromy on the cut [−2g, 2g] thus being
very smooth near the origin. The singularity comes solely
from the square root factor whose small g expansion readsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − 4g2

p
¼ u − 2g2=uþ � � �, which allows us to fix

R− ≃ g2r=u with r≡Q0ði=2Þ −Q0ð−i=2Þ in the vicinity
of u ¼ 0. Additionally using Eq. (5), we get Rþ ≃−g2r=u.
In the vicinity u ∼ iðnþ 1=2Þ of the other singularities,

R must satisfy the same Baxter equation as Q, up to some
regular terms. With the poles of RðuÞ defined above
at u ¼ �i=2, the solution is unique and is given by
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RðuÞ ¼ ig2r½ψð1
2
− iuÞ þ ψð1

2
þ iuÞ�QðuÞ=Qði=2Þ. Now

we can expand R at large u to get RðuÞ=QðuÞ≃
½2irg2=Qði=2Þ� logu from where we immediately get
Δ ¼ Lþ Sþ 2irg2=Qði=2Þ, thus reproducing the well-
known expression for the one-loop dimension Δ ¼
Lþ Sþ 2ig2∂u logðQþ=Q−Þju¼0.

Cusp anomalous dimension.—It was shown in
Refs. [26,27] that the Wilson line with a cusp of an angle
ϕ can be described by essentially the same system of TBA
equations. As a consequence, it can be also studied via the
Pμ system that turns out to be a very efficient approach, as
we are going to demonstrate. We consider a particular limit
of small ϕ. For a more general case, with more details of the
derivation, see Ref. [28].
Whereas Pμ equations remain unaltered, it is the large u

behavior that distinguishes this case from the case of
local operators. In particular, one finds that Pa ≃
ðA1u−Lþ1=2; A2u−L−1=2; A3uþLþ3=2; A4uþLþ1=2Þ instead of
Eq. (9). Even though Eq. (10) is not fully applicable now,
it appears to capture correctly the behavior of Pa at
small ϕ: For the case of the vacuum state S ¼ 0 and
Δ ¼ LþOðϕ2Þ. We see that at ϕ ¼ 0 A2A3 ≃ A4A1 → 0
suggesting that to the leading order Pa ¼ 0. Hence, one
gets from Eq. (6) ~μab ¼ μab; i.e., μab has no cuts; it is then
just a periodic function as follows from Eq. (5).
Another specific feature of this case is that Y functions

have poles that originate from the boundary dressing phase.
In particular, the product (8) has simple poles at u ¼ in=2
for any integer n ≠ 0 [27]. By requiring the regularity of the
Pμ system, we see that in Eq. (8) the poles can only
originate from zeros of μ12. Hence, μ12 is a periodic entire
function with simple zeros at in=2. In addition, as Y
functions are even for the vacuum, each μab has a certain
parity with respect to u: for instance, μ12 is odd and, hence,
it has the form μ12 ¼ C sinhð2πuÞ.
We have no physical reason to introduce infinite sets of

zeros for other μab’s, and we assume from their periodicity
that they are just constants that are further constrained by
the parity μ13¼μ24¼0 because they are odd. Then μ34 ¼ 0
and μ14 ¼ �1, in order to satisfy Eq. (4). A consistent
choice of the sign is μ14 ¼ −1. Then, Eq. (3) gives

~P1 − P1 ¼ −C sinhð2πuÞP3; ~P3 þ P3 ¼ 0; (12)

~P2 þ P2 ¼ −C sinhð2πuÞP4; ~P4 − P4 ¼ 0. (13)

In what follows, for simplicity we consider the case L ¼ 0.
The generalization to arbitrary L can be done very
similarly. First, we notice that in order to cancel the pole
in the denominator of Eq. (8) at u ¼ 0 we have to assume
P1P2 ¼ 0 at u ¼ 0. If we “split” this zero between all P’s
by introducing a

ffiffiffi
u

p
factor into each of them, we also

ensure half-integer asymptotics of P’s. From Eq. 13 we see
that P4=

ffiffiffi
u

p
should have no cut and behaves as u0 at

infinity, so it is simply P4 ¼ A4

ffiffiffi
u

p
. On the other hand,

P3=
ffiffiffi
u

p
should flip its sign when crossing the cut [−2g, 2g]

and, thus, P3 ¼ A3

ffiffiffi
u

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − 4g2

p
. P2 is given from Eq. 13

by the Hilbert transform of sinhð2πuÞ:

−P2

CA4

ffiffiffi
u

p ¼
I

2g

−2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − 4g2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − 4g2

p sinhð2πvÞ
4πiðv − uÞ ¼

X∞
n¼1

I2n−1ð4πgÞ
x2n−1

;

where xðuÞ is defined by xþ 1=x ¼ u=g, so we have to
set A2 ¼ −gCA4I1ð4πgÞ. Finally, the solution for P1 is
P1 ¼ − ðA3=A4Þ ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − 4g2

p
P2 þ ðA1 þ A3A2=A4Þ

ffiffiffi
u

p
.

Now, we introduce ϕ by requiring that 1þ Y11 ≃−φ2=2
for u → ∞ and find the energy from Y11Y22 − 1≃ 2iΔ=u
(note an extra 2 in this equation, which is due to the open
boundary conditions). We notice that to match these expan-
sions we should first assume A1A4 ¼ A2A3 as otherwise
Y11Y22 − 1 would grow linearly. Then the first condition
gives −φ2=2 ¼ iA1A4=2 while the second condition gives
Δ¼−φ2g2ð1−I3ð4πgÞ=I1ð4πgÞÞ, which is the same result
as that found from localization in Refs. [29,30] or using the
TBA/FINLIE approach in Ref. [31].

Discussion.—In this Letter, we formulated the Pμ system,
which provides a new conceptual insight into the AdS/CFT
integrability. In particular, the present Pμ system, with
Pþ
a =P−

a corresponding to the S5 eigenvalues of the quasi-
classical monodromy matrix, is the perfect counterpart of
the Qω system to be described in Ref. [23]: the four
fundamental fermionic Q functions Qâ have only one
long cut ð−∞;−2g�∪½2g;∞Þ and their monodromies are
expressed through a 4 × 4 matrix ω (periodic on the sheet
with short cuts). We believe that Qþ

â =Q
−̂
a correspond to the

AdS5 eigenvalues of Ω.
These two systems are related by linear relations of the

type μab ¼ Qabâ b̂ω
â b̂, which allowed us to make explicit

the Lorenz spin S dependence of the coefficients in
Eq. (10), using the idea that S enters the asymptotics of
Qâ and, thus, to close the Pμ system on itself [23]. In
addition, the symmetry between these two systems would
a priori allow us to interchange the role of Pa and Qâ. One
interesting application is the possibility to construct the
“physical T hook”—where the Y and T systems have the
same algebraic formulation as in the original mirror T hook,
but all cuts are short instead. At weak coupling, short cuts
collapse and we expect the one-loop physical T functions to
be the eigenvalues of transfer matrices of the psuð2; 2j4Þ
XXX spin chain [32]. The exact physical T functions seem
to represent the eigenvalues of, yet to be constructed, T
operators of an all-loop N ¼ 4 SYM spin chain.
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