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We consider the time evolution of entanglement entropy after a global quench in a strongly coupled
holographic system, whose subsequent equilibration is described in the gravity dual by the gravitational
collapse of a thin shell of matter resulting in a black hole. In the limit of large regions of entanglement,
the evolution of entanglement entropy is controlled by the geometry around and inside the event horizon
of the black hole, resulting in regimes of pre-local-equilibration quadratic growth (in time), post-local-
equilibration linear growth, a late-time regime in which the evolution does not carry memory of the size
and shape of the entangled region, and a saturation regime with critical behavior resembling those in con-
tinuous phase transitions. Collectively, these regimes suggest a picture of entanglement growth in which an
“entanglement tsunami” carries entanglement inward from the boundary. We also make a conjecture on the
maximal rate of entanglement growth in relativistic systems.
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Introduction.—Understanding whether and how a quan-
tum many-body system equilibrates is a question that
permeates many areas of physics. One could also view
equilibration as a useful setting in which to study the gen-
eration of entanglement between subsystems.
In this Letter, we consider the evolution of entanglement

entropy after a global quench in a strongly coupled gapless
system with a gravity dual, extending earlier results in
[1–10]. We find that the entanglement entropy exhibits a
variety of scaling behaviors which lead to a strikingly
simple geometric picture for entanglement growth. Via
holographic duality, equilibration from a generic initial
many-body state maps to the formation of a black hole
in the bulk, connecting questions about equilibration to
those about black holes.

Setup.—At t ¼ 0, we turn on external sources for an
interval δt in a d-dimensional boundary system, creating
a spatially homogeneous and isotropic excited state with
nonzero energy density, which subsequently equilibrates.
We work in the quench limit, taking the sourcing interval
δt to zero. On the gravity side, such a quench is described
by an infinitesimally thin shell of matter which collapses to
form a black hole, and can be modeled by an anti–de Sitter
(AdS)-Vaidya metric of the form

ds2 ¼ L2

z2
½−fðv; zÞdv2 − 2dvdzþ dx⃗ 2�; (1)

with fðv; zÞ ¼ 1 − θðvÞgðzÞ. Our results do not depend on
the matter fields making up the shell; in the classical gravity
regime we are working with, which translates to the large N
and strong coupling limit of the boundary theory, the
entanglement entropy is sensitive only to the metric of
the collapsing geometry.

For v < 0, the metric (1) is that of pure AdS correspond-
ing to the vacuum state before the quench, and for v > 0 it
is that of a black hole,

ds2 ¼ L2

z2
½−hðzÞdv2 − 2dvdzþ dx⃗ 2�; (2)

where we can view hðzÞ≡ 1 − gðzÞ as parametrizing final
equilibrium states. Seeking behavior “universal” to equilib-
rium states, we consider a general hðzÞ which (i) has a sim-
ple zero at the event horizon z ¼ zh, (ii) can be expanded as
hðzÞ ¼ 1 −Mzd þ � � � near the boundary z ¼ 0, (iii) is pos-
itive and monotonically decreasing as a function of z for
z < zh, as required by the IR-UV connection, and (iv) is
such that the metric (2) satisfies the null energy condition.
We assume that any such hðzÞ can be realized by a suitable
arrangement of matter fields. Representative examples of
such hðzÞ include gðzÞ ¼ Mzd (AdS-Schwarzschild) and
gðzÞ ¼ Mzd −Q2z2d−2 [AdS-Reissner-Nordström (RN)]
which corresponds to an equilibrium state with nonzero
charge density proportional to Q. The temperature, energy,
and entropy density of the equilibrium state corresponding
to (2) are given by T ¼ jh0ðzhÞj=4π, E ¼ ðLd−1=
8πGNÞððd − 1Þ=2ÞM, and seq ¼ ðLd−1=zd−1h Þð1=4GNÞ,
where GN is Newton’s constant in the bulk.
Now let us consider a spatial region in the boundary

theory bounded by a smooth surface Σ. The entanglement
entropy of this region can be obtained as SΣðtÞ ¼ AΣ=4GN ,
where AΣ is the area of a ðd − 1Þ-dimensional extremal
surface in the bulk ending at Σ on the boundary [2,11].
We define the size R of Σ to be the height of its future
domain of dependence [12].
Denote by ΔSΣðtÞ the difference of the entanglement

entropy with that in the vacuum. After the quench,
ΔSΣðtÞ evolves from 0 at t ¼ 0 to the equilibrium value
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ΔSðeqÞΣ ¼ seqVΣ (for sufficiently large R), where VΣ is the
volume of the region bounded by Σ. Taking δt ¼ 0, SΣðtÞ
saturates at SðeqÞΣ at a sharp saturation time ts and remains
constant afterward [1,3–5].
To describe our results we introduce a “local equilibrium

scale” leq, which is a time scale at which the system
has ceased production of thermodynamic entropy. For
an equilibration process described by (1), we identify it
as leq ∼ zh ∼ ð1=seqÞ1=ðd−1Þ. For Schwarzschild hðzÞ,
leq ∼ 1=T, while for RN hðzÞ, leq can be much smaller
than 1=T when Q is large. Importantly, at times of order
leq, local thermodynamics applies at scales comparable
to or smaller than leq, but the entanglement entropy
SΣðtÞ and other nonlocal observables defined over large
distances remain far from their equilibrium values,
for R ≫ leq.
We are interested in probing quantum entanglement at

macroscopic scales, and take R ≫ leq. On the gravity side,
there is an important distinction between extremal surfaces
for R≲ leq and R ≫ leq. If R≲ leq, the evolution lasts a
time of order t≲ leq and extremal surfaces stay outside the
horizon during the entire evolution. If R ≫ leq, the evolu-
tion is controlled by the geometry around and inside the
horizon for t≳ leq. Turning this around, we can use entan-
glement entropy (and other nonlocal observables such as
Wilson loops and correlation functions) to probe the geom-
etry behind the horizon of a collapsing black hole. This is in
contrast to static cases where extremal surfaces always stay
outside the horizon [12].

Results.—To find SΣðtÞ, one proceeds to solve the equa-
tions for an extremal surface in (1) with given boundary
conditions and evaluate its area. By identifying various
geometric regimes for the bulk extremal surface, we can
extract the analytic behavior of SΣðtÞ during corresponding
stages of time evolution. An important observation is of the
existence of a family of “critical extremal surfaces” which
lie inside the horizon and separate extremal surfaces that
reach the boundary from those which fall to the black
hole singularity. In particular, for R; t ≫ leq, the leading
behavior of the entanglement entropy can be obtained from
the geometry of such critical extremal surfaces. Here we
discuss our main results and their physical implications,
leaving a detailed technical exposition to elsewhere [13].
(i) Pre-local-equilibration growth: For t ≪ leq, the

entanglement entropy grows as

ΔSΣðtÞ ¼
π

d − 1
EAΣt2 þ � � � ; (3)

where E is the energy density and AΣ is the area of Σ.
This result is independent of the shape of Σ, spacetime
dimension d, and form of hðzÞ. For d ¼ 2 the quadratic
time dependence was also obtained in [14], and is implicit
in [5,6].
(ii) Post-local-equilibration linear growth: For

R ≫ t ≫ leq, we find a universal linear growth

ΔSΣðtÞ ¼ vEseqAΣtþ � � � ; (4)

where vE is a dimensionless number which is independent
of the shape of Σ, but does depend on the final equilibrium
state. It is given by

vE ¼ ðzh=zmÞd−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−hðzmÞ

p
; (5)

where zm is a minimum of hðzÞ=z2ðd−1Þ and lies inside the
horizon. For Schwarzschild hðzÞ,

vðSÞE ¼ ðη − 1Þð1=2Þðη−1Þ
ηð1=2Þη

; η≡ 2ðd − 1Þ
d

; (6)

while for RN hðzÞ,

vðRNÞE ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

η − 1

s ��
1 − u

η

�
η − ð1 − uÞ

�
1=2

; (7)

where u≡ 4πzhT=d decreases monotonically from 1 to 0
as Q increases from 0 to ∞, at fixed T. Note that vðSÞE ¼ 1
for d ¼ 2 and monotonically decreases with d, while vðRNÞE
monotonically increases with u—turning on a nonzero
charge density slows down the evolution. Equation (4) gen-
eralizes previous observations of linear growth for d ¼ 2
[1,3]. With a different bulk setup, the linear growth (4)
as well as (5) and (6) were obtained recently in [15].
(iii) Saturation: The evolution beyond the linear regime

depends on the shape, spacetime dimension d, and the final
equilibrium state. We focus on the most symmetric shapes,
with Σ being a sphere or strip and R being the radius or
half-width, respectively.
For a strip in d ≥ 3, the linear behavior (4) persists all the

way to saturation which occurs at time

ts;stripðRÞ ¼
SðeqÞstrip

vEseqAstrip
þ � � � ¼ R

vE
þOðR0Þ; (8)

when the bulk extremal surface jumps discontinuously.
This is analogous to a first-order phase transition with
the first derivative of SΣðtÞ being discontinuous at ts.
[16] Similar behavior occurs for a sphere in d ¼ 3 when
the final state is given by a RN black hole with sufficiently
large Q [17].
For a sphere in d ≥ 4 and any hðzÞ, the approach to

saturation resembles that of a continuous phase transition
and is characterized by a nontrivial scaling exponent

SsphereðR; tÞ − SðeqÞsphereðRÞ ∝ −ðts − tÞγ; γ ¼ dþ 1

2
;

(9)

where ts − t ≪ leq. The same exponent also applies in
d ¼ 2 for a Banados-Zanelli-Teitelboim (BTZ) black hole
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as was recently found in [14]. In d ¼ 3, if saturation
is continuous, we find Ssphereðt;RÞ−SðeqÞsphereðRÞ∝ ðts− tÞ2×
logðts− tÞ, with the logarithmic scaling barely avoiding the
“mean-field” exponent γ ¼ 2. Meanwhile, the saturation
time for a sphere, again in cases where saturation is con-
tinuous, is

tsðRÞ ¼
1

cE
R − d − 2

4πT
log RþOðR0Þ; (10)

with cE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zhjh0ðzhÞj
2ðd−1Þ

q
¼

ffiffiffiffiffiffiffiffiffi
2πzhT
d−1

q
being a dimensionless

number which for Schwarzschild and RN hðzÞ becomes

cðSÞE ¼ 1=
ffiffiffi
η

p
and cðRNÞE ¼ ffiffiffiffiffiffiffiffi

u=η
p

≤ cðSÞE . Note that for d ¼ 2,
cE ¼ 1 and the logarithmic term in (10) disappears, which
gives the results in [1,3,5].
(iv) Late-time memory loss: For a sphere, there is an

additional scaling regime ts ≫ ts − t ≫ leq in which
SðR; tÞ only depends on tsðRÞ − t, and not on t and R sep-
arately [18]. There,

SðR; tÞ − SeqðRÞ ¼ −seqλ½tsðRÞ − t�; (11)

where λ is some function that depends on hðzÞ and which
we have only determined for d ¼ 2 and BTZ hðzÞ,
λðyÞ¼ fyþð1=2πTÞ log½sin χ−1ð2πTyÞ�g, with y ¼ R − t
and χðφÞ ¼ ðcot ðφ=2Þ − 1Þ þ log tan ðφ=2Þ. Note that
λðyÞ interpolates between the linear (4) and critical (9)
behavior for, respectively, large and small 2πTy. Bulk
extremal surfaces in this late-time regime trace the
horizon. For d ¼ 2, the equivalent of (11) was first
observed in [3,6].

Physical interpretation.—Equation (4) can be rewritten

ΔSΣðtÞ ¼ seqðVΣ − VΣ−vEtÞ þ � � � ; (12)

where VΣ−vEt denotes the volume of the region bounded
by a surface obtained from Σ by moving every point inward
by a distance vEt (see Fig. 1). This suggests a simple geo-
metric picture of entanglement growth: a wave with a sharp
wave front propagates inward from Σ, such that the region
it has covered is entangled with the region outside Σ, while
the region yet to be covered is not. We call this wave an

“entanglement tsuanmi.” In this picture, saturation occurs
when the tsunami covers the full region.
The tsunami picture suggests that the evolution of entan-

glement is local. This is natural as the time evolution in
our system occurs via a local Hamiltonian which couples
directly only to the degrees of freedom near Σ, and entan-
glement has to build up from Σ. When R is large, the cur-
vature of Σ is negligible at early times and there is no
“interaction” between parts of the tsunami, which explains
the shape independence and area law of (3) and (4). As the
tsunami advances inward, curvature effects become impor-
tant and it propagates nonlinearly due to interaction
between its parts, resulting in shape-dependent saturation.
For a strip in d ≥ 3, Eq. (8) suggests tsunamis from

two boundaries propagate freely until they meet, cau-
sing discontinuous saturation. For a sphere in d ≥ 3,
1 > cE > vE, where the latter inequality may be under-
stood geometrically from the fact that the volume of an
annulus region of unit width becomes smaller as the tsu-
nami advances inward. The former inequality, along with
the presence of the logarithm in (10) and the nontrivial
exponent γ in (9), may be considered a consequence of
interactions between parts of the tsunami. In contrast, in
d ¼ 2, where Σ consists of two points, cE ¼ vE ¼ 1.
Finally, given SeqðRÞ ¼ VΣseq, one can interpret λ in (11)

as the volume which has not yet been entangled, and (11) as
implying that that volume only depends on ts − t and not
on R and t separately. In other words, the size R has been
“forgotten” at late times of evolution. Note that with (11)
valid for ts ≫ ts − t ≫ leq, such memory loss can happen
long before saturation. It is tempting to speculate that for a
generic surface Σ, in the limit of large R, memory of both
the size and shape of Σ could be lost during late times of
evolution. This would also imply that the critical behavior
(9) near saturation applies to a wide class of compact sur-
faces and not just the sphere.
The linear growth regime (4) sets in only after local

equilibration has been achieved. This explains the appear-
ance of equilibrium entropy density seq in the prefactor.
In contrast, pre-local-equilibration quadratic growth (3)
is proportional to the energy density E. Indeed, at very early
times before the system has equilibrated locally, the only
macroscopic data characterizing the initial state is the
energy density. Conversely, if we stipulate that before local
equilibration SΣðtÞ should be proportional to AΣ and E, the
quadratic time dependence in (3) follows from dimensional
analysis. Similarly, if we require that after local equilibra-
tion SΣðtÞ is proportional to AΣ and seq, linearity in time
follows.
In [1], a model of entanglement growth from free-

streaming “quasiparticles” was proposed which gave a
nice explanation for the linear growth and saturation
of entanglement entropy in d ¼ 2. In particular, vE ¼
cE ¼ 1 followed from quasiparticles propagating at the
speed of light. In a companion paper with Mezei [19],

FIG. 1 (color online). The growth of entanglement entropy can
be visualized as occurring via an “entanglement tsunami” with a
sharp wave front carrying entanglement inward from Σ.
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we generalize the free-streaming model to higher dimen-
sions and again find that at early times there is linear
growth as in (4) with seq interpreted as giving a measure
for quasiparticle density. The quasiparticle model can also
be generalized to capture the pre-local-equilibration quad-
ratic growth (3), if one takes into account that during local
equilibration the quasiparticle density gradually builds up
[19]. Since the quasiparticles can travel in different direc-
tions in d ≥ 3, although their individual speed is set to 1,
the speed of the entanglement tsunami is smaller than 1,
and is given by [19]

vðstreamingÞ
E ¼ Γððd − 1Þ=2Þffiffiffi

π
p

Γðd=2Þ < vðSÞE < 1: (13)

Notably, this speed is smaller than even the Schwarzschild
value (6)—in strongly coupled systems, the propagation
of entanglement entropy is faster than that from free-
streaming particles moving at the speed of light. Recall
that a hallmark of a strongly coupled system with a gravity
dual is the absence of a quasiparticle description. Thus,
while the quasiparticle model appears to capture linear
growth, it is likely missing some important elements
present in a holographic system, e.g., multibody entangle-
ment. Also, note that in the quasiparticle model, ts ¼ R
for a sphere, implying faster saturation than in (10), as
cE < 1 for d ≥ 3.

Generality.—Since the entanglement tsunami picture fol-
lowed from evolution under a local Hamiltonian, we expect
it to apply to more general equilibration processes for
which the initial state is not necessarily homogeneous or
isotropic, and even to systems without translation invari-
ance. With nonzero δt, the wave front will develop a finite
spread, but the entanglement tsunami picture may apply as
long as one considers entangled regions much larger than
δt. If δt is comparable to or larger than leq, the pre-local-
equilibration and saturation regimes can no longer be
sharply defined, but post-local-equilibration linear growth
should still exist, as could late-time memory loss. An
important feature of the linear growth (4) is that the tsunami
speed vE characterizes properties of the equilibrium state,
as it is solely determined by the metric of the black hole.
This again highlights the local nature of entanglement
propagation. At corresponding times, locally, the system
has already achieved equilibrium, although for large
regions nonlocal observables such as entanglement entropy
remain far from their equilibrium values. Thus, vE should
be independent of the nature of the initial state, including
whether it was isotropic or homogeneous. Finally, that the
early growth (3) is proportional to the energy density is
consistent with other recent studies of the entanglement
entropy of excited states [20–23].

Maximal entanglement rate?—To compare the growth of
entanglement entropy between different systems, we intro-
duce a dimensionless rate of growth

RΣðtÞ≡ 1

seqAΣ

dSΣ
dt

: (14)

In the linear regime, RΣ is a constant given by vE, while
in the pre-local-equilibration regime t ≪ leq in which (3)
RΣðtÞ ¼ ð2π=d − 1ÞððEtÞ=seqÞ grows linearly with time.
In a relativistic system, vE, and more generally RΣðtÞ,

should be constrained by causality, although relating them
directly to the speed of light appears difficult except in the
quasiparticle-type model mentioned earlier. We have exam-
ined vE for known black hole solutions and other hðzÞ
satisfying properties listed below (2) and find support that

vE ≤ vðSÞE ¼ ðη − 1Þð1=2Þðη−1Þ
ηð1=2Þη

: (15)

Note that vðSÞE ¼ 0.687, 0.620 for d ¼ 3, 4. The fact that
Eq. (2) satisfies the null energy condition appears to be
important for the validity of the above inequality. There
are reasons to suspect that the Schwarzschild value (6)
may indeed be special. The gravity limit corresponds to
the infinite coupling limit of the gapless boundary
Hamiltonian, in which the generation of entanglement
should be most efficient. Also, one expects that, in the bulk,
turning on matter fields (satisfying the null energy condi-
tion) will slow down thermalization, and that, similarly, in
the boundary theory, turning on conserved quantities such
as charge density will decrease the efficiency of equilibra-
tion processes. Given (13), it is tempting to conjecture that
(15) applies to all relativistic systems for which a linear
growth regime exist.
Turning to RΣ, in explicit examples we find that after

local equilibration (i.e., after linear growth has set in), it
monotonically decreases with time. This appears natural
from the tsunami picture—after the linear growth regime,
interactions between parts of the tsunami are likely to slow
it down. Thus, we speculate that after local equilibration,

RΣðtÞ ≤ vðSÞE : (16)

Before local equilibration, however, RΣ is sensitive to the
initial state, and, in particular, for RN hðzÞ with Σ a sphere
or strip, we find it can exceed vðSÞE near leq. Also, for a
highly anisotropic initial state, RΣ could for a certain
period of time resemble that of a (1þ 1)-dimensional sys-
tem for which it can reach 1. Thus, we speculate that before
local equilibration,

RΣðtÞ ≤ 1: (17)

Finally, the inequalities (15)–(17) are reminiscent of and
can be considered as generalizations to continuum systems
of the small incremental entangling conjecture for ancilla-
assisted entanglement rates in a spin system [24], recently
proved in [25]. Also, it would be interesting to formulate an
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effective theory for the propagation of an entanglement tsu-
nami in a general equilibration process. This would be sim-
ilar in spirit to recent efforts in [26] to derive equations of
motion for entanglement entropy from Einstein equations.
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