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We introduce a novel nonminimal coupling between gravity and the inflaton sector. Remarkably,
for large values of this coupling all models asymptote to a universal attractor. This behavior is independent
of the original scalar potential and generalizes the attractor in the φ4 theory with nonminimal coupling
to gravity. The attractor is located in the “sweet spot” of parameter values that are preferred by Planck's
recent results.
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Introduction.—The data releases by WMAP9 and
Planck2013 [1] attracted attention of cosmologists to
two very different cosmological models which, surpris-
ingly, made very similar observational predictions: the
Starobinsky model Rþ R2 [2] and the chaotic inflation
model VðφÞ ∼ φ4 [3] with nonminimal coupling to gravity
ðξ=2Þφ2R [4,5]. For ξ≳ 0.1, both of these models predict
that, for large number of e-foldings N, the spectral index
and tensor-to-scalar ratio are given by

ns ¼ 1–2=N; r ¼ 12=N2: (1)

For N ∼ 60, these predictions are ns ∼ 0.967, r ∼ 0.003
(ns ∼ 0.964, r ∼ 0.004 for N ∼ 55) which are in the “sweet
spot” of cosmological observables that are highlighted by
the WMAP9 and Planck2013 data.
Further investigations revealed that many other inflation-

ary theories also predict ns and r given by (1). In particular,
(1) is a universal attractor point for a broad class of theories
with spontaneously broken conformal or superconformal
invariance [6], and for closely related models with negative
nonminimal coupling ξ < 0 [7].
However, until now, in the theories with nonminimal

coupling ðξ=2Þφ2R with ξ > 0, this generality did not
extend beyond the models with the potentials ∼φ4 studied
in [4,5]. In this Letter, we propose a very simple generali-
zation of this class of models, which applies to practically
every inflationary potential VðφÞ. This can be achieved by
introducing a generalized version of nonminimal coupling
to gravity, such as ξ

ffiffiffiffiffiffiffiffiffiffiffi
VðφÞp

R, or even a much simpler one,
ξφR. We will show that all of these models have the uni-
versal set of predictions (1) in the strong coupling limit
ξ → ∞. We will also show exactly how the predictions
of the theories with different potentials VðφÞ depend on
ξ and approach the universal attractor point (1) with the
growth of ξ.

Nonminimal coupling.—The starting point of many infla-
tionary models is a Lagrangian consisting of the Einstein-
Hilbert term for gravity plus a kinetic term and scalar

potential for the inflaton field. The Lagrangian including
the generalized nonminimal coupling to gravity reads

LJ ¼
ffiffiffiffiffiffi−gp �

1

2
ΩðφÞR − 1

2
ð∂φÞ2 − VJðφÞ

�
; (2)

with (various aspects of generalized nonminimal coupling
were studied in [8])

ΩðφÞ ¼ 1þ ξfðφÞ; VJðφÞ ¼ λ2f2ðφÞ: (3)

Our notation for VJðφÞ does not imply any constraint on the
scalar potential other than being positive, and is motivated
by the superconformal version of the model that will be
introduced later. Because of the nonminimal coupling,
we will refer to this form of the theory as the Jordan frame.
In order to transform to the canonical Einstein frame, one
needs to redefine the metric:

gμν → ΩðφÞ−1gμν: (4)

This bring the Lagrangian to the Einstein-frame form:

LE ¼ ffiffiffiffiffiffi−gp �
1

2
R − 1

2

�
ΩðϕÞ−1 þ 3

2
½log ΩðϕÞ�02

�
ð∂ϕÞ2

− VEðϕÞ
�
; with VEðϕÞ ¼

VJðϕÞ
ΩðϕÞ2 : (5)

Note that in the absence of nonminimal coupling ξ ¼ 0, the
distinction between Einstein and Jordan frame vanishes. In
this case the inflationary dynamics is fully determined by
the properties of the scalar potential VJðφÞ ¼ VEðφÞ. In the
presence of a nonminimal coupling, however, one has to
analyze the interplay between the different contributions
to the inflationary dynamics due to VJðφÞ and ξ.

Behavior at weak coupling.—We first analyze the effect of
the nonminimal coupling for small ξ. At linear order, the
kinetic terms in (5) give rise to the following definition
of the canonical scalar field ϕ:

PRL 112, 011303 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

10 JANUARY 2014

0031-9007=14=112(1)=011303(5) 011303-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.011303
http://dx.doi.org/10.1103/PhysRevLett.112.011303
http://dx.doi.org/10.1103/PhysRevLett.112.011303
http://dx.doi.org/10.1103/PhysRevLett.112.011303


∂ϕ
∂φ ¼ 1 − ξ

2
fðφÞ; (6)

where we are suppressing higher-order terms. A similar
approximation can be made to the Einstein-frame potential,

VE ¼ λ2fðφÞ2½1–2ξfðφÞ�: (7)

Remarkably, this implies that the number of e-foldings,

N ¼
Z

φN

φend

�∂ϕ
∂φ

�
2 VE

∂VE=∂φ dφ; (8)

has no linear corrections. There will be corrections toN due
to changes to the field value φend when inflation breaks
down since ϵ or η become of order 1. However, these will
be subdominant as N generically receives the largest con-
tribution from the first phase of the inflationary trajectory,
where ∂V=∂φ is small. At first approximation, there are
therefore no changes to N at linear order. The only correc-
tions to the slow-roll parameters follow from the explicit
expressions for these quantities,

ϵ ¼ 1

2

�
1

VE

∂VE

∂φ
∂φ
∂φ

�
2

¼ ½1 − ξfðφNÞ�ϵJ;

η ¼ 1

VE

∂
∂φ

�∂VE

∂φ
∂φ
∂φ

� ∂φ
∂φ ¼ ηJ − 5

2
ξfðφNÞϵJ;

(9)

evaluated at the same point in field space φN as for the
original scalar potential VJðφÞ. Given a value (r0, ns0)
for the cosmological observables of any inflationary model
without nonminimal coupling, at small coupling these will
transform in the following universal way:

ns ¼ 1þ 2η − 6ϵ ¼ nsJ þ
ξ

16
fðφÞrJ;

r ¼ 16ϵ ¼ rJ − ξfðφÞrJ:
(10)

Therefore, all models at first will move along parallel lines
with a slope of −16 in the (ns, r) plane.

Behavior at strong coupling.—Next we turn to the strong
coupling limit of inflation, where ξ becomes very large.
We will later quantify how large ξ needs to be for this limit.
First, we will present two arguments for a universal attrac-
tor behavior in the limit of infinite ξ. The first argument
follows the line of reasoning above, but considers an expan-
sion for large ξ instead. The number of e-foldings in this
case reads

N ¼
Z

φN

φend

�
3

4
ξfðφÞ0 þ fðφÞ

2fðφÞ0 −
3fðφÞ0
4fðφÞ

�
dφ: (11)

Without specifying the function fðφÞ, the first term can be
integrated in a model-independent way; this would not be

possible when including next-to-linear order terms. Here
we assume that we are away from the extrema of f where
f0 ¼ 0 so that the second term in (11) blows up. Moreover,
one can neglect the contribution from the end of inflation
in the large-N limit (this is also true at strong coupling).
We therefore obtain

N ¼ 3

4
ξfðφNÞ: (12)

Note that this requires fðφNÞ to asympote to zero in the
strong coupling limit; one zooms in on the region where
the scalar potential vanishes. In this limit one obtains the
simple formula for the spectral index and tensor-to-scalar
ratio (1). This analysis demonstrates that the values of
ns and r for all positive scalar potentials VJðφÞ with a
Minkowski minimum asymptote to (1) in the strong cou-
pling limit.
The second argument starts from the kinetic term in

Einstein frame (5). In the large-ξ limit, the two contribu-
tions to the kinetic terms scale differently under ξ.
Retaining only the leading term, the Lagrangian becomes

LE ¼ ffiffiffiffiffiffi−gp �
1

2
R − 3

4
½∂ log ðΩðφÞÞ�2 − λ2

fðφÞ2
ΩðφÞ2

�
: (13)

Remarkably, the canonically normalized field ϕ involves
the function ΩðφÞ of the scalar potential itself:

ϕ ¼ �
ffiffiffi
3

2

r
log ðΩðφÞÞ: (14)

Therefore, in terms of ϕ, the theory has lost all reference
to the original scalar potential; it has the universal form.
In case of odd fðφÞ, we choose the same sign in (14)
for both signs of ϕ and find

LE ¼ ffiffiffiffiffiffi−gp �
1

2
R − 1

2
ð∂ϕÞ2 − λ2

ξ2
ð1 − e−

ffiffiffiffiffiffi
2=3

p
ϕÞ2

�
; (15)

which is the scalar formulation of the Starobinsky model
[2]. In case the function fðφÞ is even in φ, we choose
opposite signs and find the following attractor action,

LE ¼ ffiffiffiffiffiffi−gp �
1

2
R − 1

2
ð∂ϕÞ2 − λ2

ξ2
ð1 − e−

ffiffiffiffiffiffiffiffiffi
2=3ϕ2

p
Þ2
�
; (16)

symmetric under ϕ → −ϕ.
The crucial assumption in the above derivation was that

the kinetic term is dominated by the second contribution.
In other words, we require

ΩðφÞ ≪ 3

2
ΩðφÞ02: (17)

In terms of our original scalar potential and the associated
slow-roll parameter ϵJ, this translates into
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1þ ξfðφÞ
ξ2fðφÞ2 ≪

3

4
ϵJðφÞ: (18)

Interestingly, this implies that models with a flatter scalar
potential require a stronger coupling in order to reach the
vicinity of the attractor. In contrast, for less fine-tuned mod-
els with larger values of ϵJ, the system reaches the attractor
for a lower value of the coupling ξ. It is important to point
out that even models with a scalar potential that does not
support inflation still asymptote to (15) or (16) at strong
coupling and have the same observables (1).
The amplitude normalization of the power spectrum

constrains the overall coefficient of the scalar potentials.
For ξ ¼ 0 this depends on the coefficient λ of the original
scalar potential. For large ξ, the Planck normalization of
the power spectrum requires λ=ξ ≈ 10−5. For intermediate
values there is an interplay between the coefficients λ and
ξ, which can always be satisfied by suitable choice of λ.
For the specific case of the φ4 theory, this was discussed
in detail in [5].

Supergravity embedding.—The nonminimal coupling can
be embedded in supergravity. We follow the setup of
[9], which introduces two chiral multiplets with scalar
fields Φ and S. The former will contain the inflaton while
the latter is responsible for supersymmetry breaking. We
thus take the sGoldstini to be orthogonal to the inflaton,
allowing for an arbitrary scalar potential and avoiding
the restrictions of [10]. While the original proposal has a
specific Kähler potential and an arbitrary function in the
superpotential, we take the Kähler potential to depend
on Ωð ffiffiffi

2
p

ΦÞ, which will be related to the scalar potential.
Our final expressions are

K ¼ −3 log

�
1

2
½Ωð

ffiffiffi
2

p
ΦÞ þΩð

ffiffiffi
2

p
Φ̄Þ� − 1

3
SS̄

þ 1

6
ðΦ − Φ̄Þ2 þ ζ

ðSS̄Þ2
Ωð ffiffiffi

2
p

ΦÞ þΩð ffiffiffi
2

p
Φ̄Þ

�
;

W ¼ λSfð
ffiffiffi
2

p
ΦÞ;

(19)

where Ωð ffiffiffi
2

p
ΦÞ ¼ 1þ ξfð ffiffiffi

2
p

ΦÞ and fð ffiffiffi
2

p
ΦÞ is a real hol-

omorphic function. This leads exactly to the bosonic model
discussed above upon identifying Φ ¼ φ=

ffiffiffi
2

p
while S ¼ 0.

It can easily be seen that this is a consistent truncation.
The superconformal version of this model explains the

simplicity of the Jordan frame potential in these models:
in a gauge where the conformon is fixed, the superconfor-
mal potential is given by W ¼ λSfð ffiffiffi

2
p

ΦÞ (in the notation
of [11,12]). This implies that the Jordan frame potential at
S ¼ 0, Φ ¼ φ=

ffiffiffi
2

p
, is given by

VJ ¼ λ2
���� ∂W∂S

����
2

¼ λ2f2ðφÞ: (20)

This model generalizes the supersymmetric embedding of
the φ4 theory considered in [12] to arbitrary scalar

potentials. In that specific case, one could interpolate
between a canonical Kähler potential depending on ΦΦ̄
and a shift-symmetric one depending on ðΦ − Φ̄Þ2 by
means of ξ, but this is not possible in the general case.
Regarding the stability of the truncation to the inflation-

ary trajectory, where three scalars are truncated out, the
masses of the four fields are given by m2

ReΦ ¼ ηV,
m2

ImΦ ¼ ð4
3
þ 2ϵ − ηÞV, m2

S ¼ ð− 2
3
þ 6ζ þ ϵÞV. Up to

slow-roll corrections, one can thus stabilize all three trun-
cated fields with the choice ζ > 1

9
.

This supergravity embedding goes some way towards an
understanding of the symmetries underlying the attractor
behavior. In particular, for ξ ¼ 0 there is symmetry
enhancement in the Kähler potential: it has a shift sym-
metry in the real part of Φ and hence does not depend
on the inflaton. The same holds for any value of ξ when
choosing the function fð ffiffiffi

2
p

ΦÞ to be a constant. Any devi-
ations from this will introduce a spontaneous breaking of
this symmetry.

Chaotic inflation.—In this section we illustrate the univer-
sal attractor behavior for chaotic inflation [3], with the
scalar potential

VJðφÞ ¼ λ2M4−n
Pl φn: (21)

Without nonminimal couplings, these have the following
cosmological observables:

nsJ ¼ 1 − 2þ n
2N

; rJ ¼
4n
N

; (22)

at large N. These are specific cases of the most general 1=N
dependence derived in [13]. The attractor behavior for this
class is depicted in Fig. 1. The crossover behavior between
the two regimes spans a number of decades of the nonmi-
nimal coupling ξ, and in addition is model dependent.
Indeed, models with a larger ϵJðφÞ require a smaller
coupling to approach the attractor. However, the attractor
is always reached before ξ ¼ 100.

Generalized strong coupling attractor.—In the previous
investigation, we assumed that ΩðφÞ ¼ 1þ ξfðφÞ, and
VJðφÞ ¼ λ2f2ðφÞ, but one may also consider a more
general possibility,

ΩðφÞ ¼ 1þ ξgðφÞ; VJðφÞ ¼ λ2f2ðφÞ; (23)

where we introduce an additional functional freedom in the
definition of ΩðφÞ, disconnecting it from VJðφÞ. Once we
do so, VEðφÞ ¼ VJðφÞ=Ω2ðφÞ no longer approaches a con-
stant at large φ. Does it mean that our previous results
become inapplicable?
Note that when the field rolls to the minimum of its

potential, fðφÞ is supposed to vanish, or at least become
incredibly small to account for the incredible smallness
of the cosmological constant ∼10−120. As in the previous
analysis, we will assume that the same is true for the
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function gðφÞ. Therefore, we will expand both functions in
a Taylor series in φ, assuming that they vanish at some
point (which can be taken as φ ¼ 0 by a field redefinition)
and that they are differentiable at this point:

fðφÞ ¼
X∞
n¼1

fnφn; gðφÞ ¼
X∞
n¼1

gnφn: (24)

By rescaling λ and ξ, one can always redefine f1 ¼ g1 ¼ 1
without loss of generality.
Let us first ignore all higher-order corrections, i.e., take

fðφÞ ¼ gðφÞ ¼ φ. In this case our investigation is reduced

to the one performed earlier, and Eq. (12) yields
φN ¼ ð4NÞ=ð3ξÞ. This result implies that for ξ ≫ N one
has φN ≪ 1.
If one now adds all higher-order terms and makes an

assumption that the coefficients fn and gn are Oð1Þ, one
finds that in the large coupling limit ξ ≫ N, these correc-
tions are suppressed by the powers of ð4NÞ=ð3ξÞ, so one
can indeed ignore these terms. This means that in the large
ξ limit the potential VðϕÞ in terms of the canonically nor-
malized inflaton field ϕ coincides with the potential (15),
and all observational predictions of this new class of the-
ories coincide with the predictions (1). This universality is
similar to the universality of predictions of the broad class
of theories found in [6,7].
In this analysis we assumed that the Taylor series begins

with the linear term. However, if the theory is symmetric
with respect to the change φ → −φ, as is the case, e.g.,
in the φ4 theory, then the expansion for fðφÞ and gðφÞ
begins with the quadratic terms. The rest follows just as
in the case discussed above: For ξ ≫ N, higher-order cor-
rections do not affect the description of the observable part
of the Universe; therefore, we have the same observational
predictions (1) as before, but now the relevant part of the
potential is even with respect to the field ϕ and its large ξ
limit is given by (16).

Discussion.—In this Letter we have demonstrated that
there is a universal attractor for all inflationary models when
introducing a specific nonminimal coupling term correlated
with the choice of the potential. Upon taking its coefficient
ξ large enough, all models asymptote to a spectral index and
tensor-to-scalar ratio that are indistinguishable from (1),
and hence are in perfect agreement with the Planck results.
How large ξ needs to be in order to reach the attractor is
model dependent, but in all examples we have found that
ξ ¼ 100 is sufficient. Moreover, the initial approach to the
attractor proceeds in a parallel fashion; upon turning on ξ,
the different models move in identical directions in the
(ns, r) plane. The resulting image in Fig. 1 resembles that
of a comb. The straight line towards the attractor for the φ4

theory is a coincidence between the slope of the lines and
the location of that particular theory; other models do not
start moving in the direction of the attractor.
The new class of cosmological attractors (2) can be gen-

eralized in many different ways. We discussed its super-
gravity or superconformal generalization, as well as the
possibility to use the function Ω not related to fðφÞ.
This additional universality appears because in the large
ξ limit the description of the last N e-foldings of inflation
requires knowledge of a very limited range of values of
fðφÞ and φ, where the simplest linear or quadratic approx-
imations may be sufficient. Zooming to this limited range
of variation of φ is accompanied by the effective stretching
of the potential in terms of the canonical inflaton field ϕ.
This stretching allows the existence of an inflationary
regime even in the theories where the original potential

FIG. 1 (color online). The ξ dependence of (ns, r) on a linear
and a logarithmic scale for different chaotic models with
n ¼ ð2=3; 1; 2; 3; 4; 6; 8Þ, from right to left, for 60 e-foldings
(upper panel). The points on the logarithmic scale (lower panel)
correspond to logðξÞ ¼ ð−1;…; 1Þ, from top down. The conver-
gence to the attractor point occurs almost instantly for n ≥ 4.
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VJðφÞ is very steep. The resulting Einstein frame potential
acquires the form (15) and (16), which leads to the universal
observational predictions (1) for this new class of theories.
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