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We propose a method for universal fault-tolerant quantum computation using concatenated quantum
error correcting codes. The concatenation scheme exploits the transversal properties of two different codes,
combining them to provide a means to protect against low-weight arbitrary errors. We give the required
properties of the error correcting codes to ensure universal fault tolerance and discuss a particular example
using the 7-qubit Steane and 15-qubit Reed-Muller codes. Namely, other than computational basis state
preparation as required by the DiVincenzo criteria, our scheme requires no special ancillary state
preparation to achieve universality, as opposed to schemes such as magic state distillation. We believe that
optimizing the codes used in such a scheme could provide a useful alternative to state distillation schemes
that exhibit high overhead costs.
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Introduction.—The ability to physically manipulate quan-
tum mechanical systems promises to provide a means
towards powerful quantum computing and simulation
[1–4]. Understanding and controlling sources of noise during
the manipulation of quantum systems is fundamental
towards the development of scalable devices that could
achieve such computing promises. The theory of quantum
error correction has been developed to address the latter,
protecting quantum systems through the use of additional
ancillary systems. Quantum error correction has progressed
rapidly to address multiple types of errors and situations, and
provides a building block to large scale quantum devices
using fault-tolerant quantum computation.
The goal of fault-tolerant quantum computation is to

control quantum errors in a coherent way such that they do
not propagate badly throughout the different quantum
systems that are being coupled for the use of quantum
computation. Any 2-qubit coupling gates can propagate
errors and are typically avoided as multiple errors may
lead to logical faults after the application of quantum error
correction. However, in order for such schemes to provide
universal quantum computation, additional resources are
required, typically through the preparation of special
quantum states [5–8]. Addressing quantum noise in this
manner allows for the establishment of noise thresholds,
levels of noise for which scalable quantum computation
is achievable without exponential overhead in resources
[5–7,9,10]. In certain cases, rigorous numerical values of
the threshold have been established by calculating the
exact propagation of errors given a fixed error model and
method of encoding for logical computation [11–13].
Recently, one of the most widely used methods for fault-

tolerant quantum computation is magic state distillation [8],
which promotes transversal Clifford gate operations to

universal quantum computation through gate teleportation.
While providing a means to increase the fault-tolerance
threshold, the overhead in the preparation scheme for magic
state distillation remains one of the large bottlenecks for
scalable quantum computing, estimated to account for up to
90% of the overall number of qubits in certain architectures
[14]. As such, much effort is being invested into under-
standing and reducing the overhead associated with such
schemes [15–18]. While such research has paved the way
for the reduction of the overall cost of fault-tolerant
quantum computation, this work will take a different
approach by using concatenated quantum error correcting
codes to provide universal fault tolerance, rather than state
distillation. The scheme we propose uses two different
quantum error correcting codes in concatenation. We argue
that by sacrificing the full distance of the concatenated
quantum error correcting code, we can exploit the trans-
versal properties of both quantum codes to produce a set of
operations that, while not globally transversal, provide a
means for universal fault-tolerant quantum gates. In this
work we shall focus on protecting against arbitrary single-
qubit errors; however, we provide a brief description of how
such a scheme could be generalized to correct against t
errors. Recently, Paetznick and Reichardt [19] have pro-
posed a similarly motivated work on universal quantum
fault tolerance without the preparation of special ancillary
states and their idea was further developed to a topological
setting by Bombín [20]. In their scheme, additional trans-
versal measurements and error correction are introduced
after the action of the transversal Hadamard gate in order to
recover the code space. The presented scheme differs from
such a construction in that it does not require an additional
round of error correction since the logical gates do not
disrupt the code space as they are not necessarily
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transversal. This comes at the expense of requiring an
additional concatenated code for protection. Additionally,
there has been research that has focused on obtaining a set
of fault-tolerant operations to transfer between different
quantum error correcting codes, however such schemes
have not yet yielded a set of universal operations [21–23].

Preliminaries.—Let G1 be a finite set of unitary operators
on a single-qubit Hilbert spaceH1. We say that the set G1 is
a universal gate set on H1 if any unitary transformation U
inH1 can be approximated using gates from the gate set G1,
that is, given a target fidelity ϵ the unitary U can be
approximated using Oðlogc1=ϵÞ gates from the gate set G1,
where c is a constant [24,25]. Given a Hilbert space H
composed of multiple qubits, any universal set of quantum
gates on each of the individual qubits along with entangling
gates coupling the qubits form a universal gate set for the
full Hilbert space H [26]. The universal gate set that we
shall focus on in this work’s example will be the set
G ¼ fH;T;CNOTg, where H is the Hadamard gate, T is
the π=8 gate (T ¼ e−iπ=8j0ih0j þ eiπ=8j1ih1j), and CNOT is
the 2-qubit controlled-not gate [27].
Researchers focus on universal gate sets since develop-

ing techniques to deal with errors associated with a finite
set of gates is a much more tractable task than correcting for
faults for arbitrary unitary gates. As such, quantum error
correcting codes are constructed to best protect against
errors in the implementation of logical gates for a chosen
universal gate set. We shall denote the weight of an error as
the number of locations where a given error acts non-
trivially (not the identity). One of the simplest methods to
construct fault-tolerant schemes is by applying gates trans-
versally. A logical gate g on a quantum error correcting
code C is called t-transversal if g interacts with at most t
locations of the underlying qubits composing the code C.
Unfortunately, it has been shown that no quantum error
correcting code contains a universal set of transversal gates
[28,29]. This motivates the search for different fault-
tolerant methods to implement universal quantum logic.

Concatenated quantum error correction.—The general con-
catenated error correcting scheme is as follows: the qubits that
we desire to protect against errors are encoded into a quantum
error correcting code C1. In this work, we shall require the
code distance of C1 to be at least three, so that it can correct
arbitrary single-qubit errors. The qubits that make up the code
C1 are subsequently encoded into a second code C2, which
again will be required to have distance of at least three. The
general layout of the scheme is summarized in Fig. 1. As we
are focusing on codes that correct for an arbitrary single-qubit
error, we shall refer to a transversal gate for a given code as a
gate which is 1-transversal and any gate not having this form
as nontransversal.
The important properties for the quantum error cor-

recting codes C1 and C2 for the implementation of universal
fault-tolerant quantum logic are as follows: (1) For any
logical gate that is nontransversal in C1, there must exist an

application of this logical gate using gates that are
transversal in C2. (2) The recovery operations (syndrome
measurement and error correction operations) on C1 and C2
must be globally transversal (in the full concatenated
code space).
Since there exists no quantum error correcting code that

exhibits a full set of transversal quantum gates [28,29],
there will always be at least one gate in a given universal
gate set that will couple qubits that make up the error
correcting code, leading to the possibility of bad error
propagation. Consider the first level of encoding C1, the
nontransversal gate can lead to a propagation of errors;
however, if we are now encoding each of the qubits making
up the code C1 into a further error correcting code, the
propagation from a single to multiple physical faults will
not necessarily lead to a propagation of logical faults if the
errors are sufficiently sparse.
Specifically, the first requirement of the concatenated

quantum error correction scheme stipulates that every non-
transversal gate in the code C1 can be implemented using
transversal gates in the code C2. The nontransversality of a
given gate will cause the propagation of a single physical
fault between different logical qubits in C1. The implemen-
tation of the nontransversal C1 gates will govern the
propagation of the physical errors between the qubits.
Therefore, we require the gates that make up the logical
gate on C1, themselves logical gates for the code C2, to be
transversal in the encoded space C2. By imposing such a
restriction, a single error occurring in the nontransversal gate
application in C1 will propagate to at most a single physical
error in each of the logical qubits forming C1, which
themselves are encoded blocks of C2. This is precisely the
property for which one is searching in a fault-tolerant
quantum computation, that a single physical error will
propagate to at most a single physical error on encoded
code blocks, allowing for the correction of such errors.
Given a choice of codes C1 and C2, not all gates of the

universal gate set will be transversal in C2. By the properties
outlined above, any logical gate in C1 that uses gates from

FIG. 1. General construction of a logical gate for a concat-
enated error correction scheme. The qubit of information is
encoded in a quantum error correcting code C1, whose qubits are
in turn encoded into a code C2. As such, the logical gate g1 (given
by the boxed region) on the encoded space C1 will be composed
of multiple logical gates g2 on the C2 code blocks.
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C2 that are not transversal in its construction must be
transversal in C1. In performing such a gate, a single fault
on a particular C2 code block could propagate to multiple
errors within this code block and could lead to a logical C2
fault in the code block where the error occurred. However, a
single logical fault on one of the C2 code blocks will not
yield a global logical fault on C1, as such a code can correct
for arbitrary logical faults on one of its encoding logical
qubits.
The concatenation scheme therefore protects all gates in

the universal gate set. The scheme circumvents the result
claiming that no universal gate set can be implemented
transversally [28,29] by not implementing the gates in a
strict transversal manner. Rather, the gates are implemented
such that errors spread to locations that are further protected
by an additional code through concatenation.
How is error correction then applied? We shall describe

the error correction properties that are required after the
application of two types of logical quantum gates, those that
are nontransversal in C1 yet use an application of transversal
C2 gates, and the application of logical gates that are
transversal in C1, whose individual block gates are non-
transversal in C2. In the case of the former, the important
property of the error correction is that it does not couple
qubits within the code blocks of C2, as the application of the
gate could propagate a single fault into multiple single faults
on each of the C2 code blocks. If the error correction
procedure propagates errors within the C2 code blocks, then
single errors on each code block will propagate to multiple
errors on each code block, thus possibly leading to logical
errors on multiple code blocks, therefore causing a global
logical fault. As such, it is very important that the error
syndrome measurement and correction be performed trans-
versally on each of the C2 code blocks. Error correction at the
C1 level is not necessary after the application of this type of
logical gate, as the errors propagate within the code blocks
and the scheme is constructed in a way that all such errors on
the code blocks are recoverable as long as only a single fault
occurs in the application of the gate.
The error correction procedure after the implementation

of the transversal gate in C1 (using nontransversal C2 gates)
will require an additional level of error correction. As in the
application of the nontransversal C1 gates, error correction
on each of the C2 code blocks is first applied. As the
application of the logical gate on C1 uses nontransversal C2
gate applications, a single (correctable) error on a particular
C2 code block can propagate to a noncorrectable set of
errors on that given code block. As such, performing the C2

error correction on that code block will introduce a logical
error (if the error were to occur during the C2 error
correction process itself then this error will be weight
one). However, as mentioned above, if only a single logical
C2 error has occurred, the logical fault introduced by the
error correction will be correctable using an error correction
procedure on C1. However, it is important that the error

correction procedure on C1, which is a logical error
correction procedure as it acts on logically encoded states
in C2, is itself globally transversal. As such, errors that
could occur during error correction will not propagate to
multiple physical errors that could be detrimental upon the
application of further logical computation.

Example: A 105-qubit quantum error correcting code.—A
simple example of the scheme outlined in this work
involves two of the most well studied quantum error
correcting codes. C1 will be the 7-qubit Steane code [30]
and C2 the 15-qubit Reed-Muller code [31]. The 15-qubit
Reed-Muller code has the following set of transversal gates:
fT;CNOTg, where each logical gate is achieved by
applying the gate itself to each of the qubits (or T† in
the case of the logical T gate). The missing gate from the
universal gate set is the Hadamard gate. The 7-qubit Steane
code (corresponding to C1) has the following set of trans-
versal gates: fS;H;CNOTg, where S ¼ j0ih0j þ ij1ih1j.
Each logical gate is achieved by applying an individual gate
to each of the qubits, or pair of qubits (in the case of
applying logical S, one applies S† to each of the qubits). As
such, C1 can implement gates from the Clifford group
transversally, yet is missing the T gate from the universal
gate set that can be implemented transversally.
The concatenated code is seven blocks of 15 qubits,

totalling 105 qubits, encoding 1 qubit of information. As
both quantum codes share the property that all Pauli gates,
the S phase gate, and the CNOT gate can be implemented
logically by applying the gate to each qubit, or pair of
qubits, then the globally logical version of these gates for
the 105-qubit code are also achieved by applying the
corresponding gate to each qubit, or pair of qubits, of
the full 105-qubit code. Additionally, all syndrome mea-
surements (which will correspond to the measurement of
Pauli observables) will be transversal within the code, as
well as the Pauli corrections.
The logical T gate is achieved by combining logical

gates on the different C2 code blocks, which, as shown in
Fig. 2, is not transversal in the C1 code, yet uses gates that
are all transversal within the 15-qubit C2 code blocks. As
explained in the previous section, a single error in the
implementation of the logical gate can propagate to
multiple errors (a maximum of 3 for this particular gate
application) yet will be distributed such that there are only
single errors on each C2 code block. The error correction
procedure measures the syndromes on each of the C2 code
blocks individually, which corresponds to measuring the 14
syndromes corresponding to the 15-qubit code. The Pauli
error correction operations are then applied to correct for
the errors that occurred during the application of the logical
T gate. As such, the concatenated code can correct for an
arbitrary weight-one error that occurs during the imple-
mentation of the logical T gate.
In order to implement the logical H, one applies the

logical H15 on each of the C2 code blocks; as such it is
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transversal in the encoded states that form the code C1, yet
each individual H15 is not transversal in its implementation
on the C2 code blocks. A single error that occurs in one of
the individual applications of theH15 gates could propagate
to multiple errors within the code block, leading to possible
logical errors. However, if only one such error occurs, the
full quantum code will still be protected. After the action of
the gate, error correction is applied to each of the C2 code
blocks, possibly resulting in correction causing a C2 logical
fault. However, if only one such logical C2 fault occurs,
subsequent global error correction at the logical C1 level
will detect such an error. The C1 error correction involves
measuring the 6 stabilizers of the 7-qubit Steane code,
where each stabilizer is now a logical stabilizers composed
of X15 or Z15 operators. However, as such operators are
transversal for the 15-qubit code, they can be measured in a
transversal way. The maximal weight of the stabilizers
measured for the C1 code is 28, since each of the logical X15

gates involve 7 X gates on the C2 code block, and the
weight of the 7-qubit X stabilizers is 4. Error correction for
the C1 level will then be completed by performing logical
Pauli error correcting operations on affected C2 code
blocks. The measurement of the C1 stabilizers will be
the most expensive error correction step due to the high
weight of the stabilizers.
As described, the concatenated code can correct for any

weight-one error. However, it is worth noting that if one
used a straight concatenation of the two codes to protect
against quantum noise, the concatenated code will be a
[[105,1,9]] quantum error correcting code; that is, it would
protect against 4 arbitrary errors. In this fault-tolerant
scheme, we are sacrificing the larger distance of a straight
concatenation scheme in order to protect against arbitrary
single qubit errors when performing logical gates.

Conclusion.—In this work, we have proposed a method
for universal quantum fault tolerance using concatenated
error correcting codes. The full distance of the concatenated
scheme is sacrificed in order to establish a set of universal
quantum gates that are robust to a smaller set of errors. The
transversal properties of the two different error correction
schemes are exploited to limit the propagation of errors to
either be sufficiently sparse, only a small number of errors
per encoded code block, or limiting all errors to be
contained within a single code block.
The scheme described in this work could be adapted to

account for quantum error correcting codes C1 and C2 that
correct against arbitrary weight t errors. The key properties
of universal gate sets developed for such a concatenation
scheme would be modified such that given a gate which is
not t-transversal in C1, the logical gates in C2 which form
such a gate must be t-transversal in C2 when applied in
composition. Additionally, similar requirements for the
quantum error correction operations would be necessary.
The error correction operations should be 1-transversal as
to not possibly propagate errors that occur during the error
correction process to multiple errors that could be detri-
mental at the next stage of computation.
The fault-tolerance threshold of the 105-qubit concat-

enated codewill likely be quite lowdue to the highnumber of
fault locations and the globally small distance of the code.
However, exploring methods to implement sets of universal
fault-tolerantgateswithout theadditionaloverheadofspecial
state preparation is an important question with regards to
future physical implementations of fault-tolerant quantum
computation. Could the overall number of qubits in such a
scheme be reduced in order to improve the threshold rate?
Perhaps more interestingly, could a family of such codes be
established that increases the code distance of the overall
scheme while keeping the rate of the code constant?
Additionally, the set of conditions for the concatenated
construction does not limit the scheme to CSS codes, yet
they are relatively simple to analyze due to their transversal
CNOT implementation. Finding examples of the concatena-
tion scheme for non-CSS codes would be an interesting
research direction.
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