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We investigate the role of inefficiency in quantum measurements in the quantum-to-classical transition,
and consistently observe the quantum-to-classical transition by coarsening the references of the measure-
ments (e.g., when and where to measure). Our result suggests that the definition of measurement precision
in quantum theory should include the degree of the observer’s ability to precisely control the measurement
references.
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Introduction.—Typical quantum phenomena observed on
microscopic scales somehow disappear on macroscopic
scales. There have been trials to explain the quantum-to-
classical transition. Decoherence is one of the well known
and successful attempts to explain such a revelation of a
classical world out of quantum mechanical rules [1].
There are two crucial elements in the framework of
quantum mechanics: one is the state of a physical system
represented by a wave function, and the other is the meas-
urement represented by non-negative operators. The
decoherence program focuses on the evolution of the state:
it describes a transition of a quantum state to a classical one
due to its interactions with environments.
Recently, a different point of view was presented [2],

where coarsening of measurements is attributed to the
cause of the quantum-to-classical transition. Along this
line, it was also pointed out that coarsening of measure-
ments makes it hard to detect micro-macro entanglement
in optical systems [3]. However, there exist seemingly con-
tradicting results where even fuzzy measurements allow us
to observe severe violations of Bell’s inequality [4,5] and
also of the Leggett-Garg inequality [6]. It means that fuzzi-
ness in measurements does not always result in the quan-
tum-to-classical transition. There is yet another example in
which coarsening measurements results in local realism
under stronger restrictions [7]. There have been extensive
attempts to clarify sophisticated conditions of the quantum-
to-classical transition [8–12], and it has been found that the
quantum-to-classical transition does not always occur when
it is expected [9,11,12]. Indeed, a condition of the measure-
ment process in which the quantum-to-classical transition is
definitely forced to occur is yet to be found.
In fact, a complete measurement process is composed of

two parts: the one part is to set a measurement reference and
control it while the other is the final detection with the cor-
responding projection operator. The aforementioned works
to explain the quantum-to-classical transition have focused
on the role of inefficiency in the final detection by coarsening
its measuring resolution. On the other hand, the control of

the measurement reference is described by an appropriate
unitary operator with a reference variable applied to the pro-
jection operator. It is worth investigating the role of the
measurement reference by coarsening the accuracy of this
unitary operation. Such unitary operations are often indis-
pensable when strong quantum effects, incompatible with
classical physics, are observed by standard tools such as
Bell’s inequality [13] and the Leggett-Garg inequality [14].
Does the accuracy of controlling such measurement

references play a crucial role in the quantum-to-classical
transition? In this Letter, we intensively tackle this question
using a generic example of macroscopic entanglement
together with specific physical examples. Our study clearly
shows that coarsening of the final measurement resolution
and that of the measurement reference lead to completely
different results. The quantum-to-classical transition is
forced to occur when the reference of measurement is
coarsened, while it is not the case when only the final
projection is coarsened. This aspect of the “accuracy of
the measurement reference” has not received proper atten-
tion in the context of the quantum-to-classical transition.
We believe that our discussion, by clarifying the conditions
of the quantum-to-classical transition, sheds light upon the
appearance of a classical world from another angle.

Generic study.—We first consider a generic example with
an infinite dimensional system together with an orthonor-
mal basis set fjonig, where n takes integer indexes from the
minus to the plus infinities. Let us consider observable
Ok ¼ Okþ −Ok−, where

Okþ ¼
X∞

n¼kþ1

jonihonj; Ok− ¼
Xk
n¼−∞

jonihonj; (1)

and Ok represents a “sharp” dichotomic measurement with
eigenvalues �1. A fuzzy version of this dichotomic meas-
urement may be written as

Oδ ¼
X∞
k¼−∞

PδðkÞOk; (2)
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where PδðkÞ ¼ ð1=δ ffiffiffiffiffiffi
2π

p Þ exp½−ðk2=2δ2Þ� is the normal-
ized Gaussian kernel with standard deviation δ. Here, δ
defines the degree of fuzziness in the measurement, i.e.,
the degree of coarsening in the final measurement resolu-
tion. We should assume δ > 1 in order to satisfy the
normalization condition with the discrete version of the
Gaussian function; however, this does not affect any essen-
tial aspects of our discussions. We then say that two states
are macroscopically distinguishable if they can be distin-
guished with a small error probability usingOδ with a large
value of δ. For example, states joni and jo−ni can be
discriminated with the error probability of

Pe ¼ 1 −
� X∞
k¼−∞

1

δ
ffiffiffiffiffiffi
2π

p e−ðk2=2δ2Þχn−k
�
2

; (3)

where χj is 1 for j > 0 (−1 for j ≤ 0). Naturally, one can
introduce a type of entanglement as follows:

jMni ¼
1ffiffiffi
2

p ðjonijo−ni þ jo−nijoniÞ; (4)

which would become macroscopic entanglement when n is
sufficiently large.
We now consider a unitary transform UðθÞ, that is the

rotation between two states joni, jo−ni:

UðθÞjoni ¼ cos θjoni þ sin θjo−ni;
UðθÞjo−ni ¼ sin θjoni − cos θjo−ni: (5)

If one considers measuring a spin-1=2 system or polariza-
tion of a photon, the unitary operation simply implies a
rotation of the measurement axis. The coarsened version
of the unitary operation applied to the projection operator
Oδ can be described as

Oδ;Δðθ0Þ ¼
Z

dθPΔðθ − θ0Þ½U†ðθÞOδUðθÞ�; (6)

where PΔðθ − θ0Þ is the Gaussian kernel centered around
θ0 with standard deviation Δ. In contrast to the value of δ in
Eq. (2), Δ in Eq. (6) quantifies the degree of coarsening in
the measurement reference.
Now, we study the Bell-Clauser-Horne-Shimony-Holt

(Bell-CHSH) inequality [13,15] using the entangled state
in Eq. (4). The correlation function is the expectation value
of the measurement operators as

Eδ;Δðθa; θbÞ ¼ hOδ;ΔðθaÞ ⊗ Oδ;ΔðθbÞia;b; (7)

where the average is taken over entangled state jMniab.
Let us first consider that the unitary transform UðθÞ can be
perfectly controlled (Δ ¼ 0) but the final action of meas-
urement is inaccurate (δ > 1). We then obtain an explicit
expression of Eδðθa; θbÞ as

Eδðθa; θbÞ ¼
1

2
½fδðn; θ1Þfδð−n; θ2Þ þ fδð−n; θ1Þfδðn; θ2Þ

þ 2gδðn; θ1Þgδðn; θ2Þ�; (8)

where fδðn; θÞ ¼
P∞

k¼−∞ PδðkÞ ðcos2θχn−k þ sin2θ χ−n−kÞ
and gδðn; θÞ ¼ sin θ cos θ

P∞
k¼−∞ PδðkÞðχn−k − χ−n−kÞ.

The Bell function can be obtained as

B ¼ Eδðθa; θbÞ þ Eδðθ0a; θbÞ þ Eδðθa; θ0bÞ − Eδðθ0a; θ0bÞ;
(9)

which should satisfy jBj ≤ 2 by the assumption of local
realism [15]. We plot the numerically optimized Bell func-
tion in Fig. 1(a) for n and δ. Obviously, an arbitrarily large
value of δ can be compensated by increasing n in order to
observe violation of the Bell-CHSH inequality.
We also consider the case in which the unitary transform

is coarsened while the efficiency of the final measurement
is perfect. In this case, we set Δ to be nonzero while δ ¼ 0.
The explicit form of the correlation function is then
obtained as

EΔðθa; θbÞ ¼ −
Z

∞

−∞

Z
∞

−∞
dϕadϕbPΔðϕa − θaÞ

× PΔðϕb − θbÞ cos½2ðϕa þ ϕbÞ�: (10)

Obviously, EΔðθa; θbÞ is independent from the value of n,
i.e., macroscopicity of entanglement. In Fig. 1(b), it is clear
that regardless of the value of n, the increase of Δ will
totally destroy violation of Bell’s inequality. We have ana-
lyzed the Bell-CHSH inequality but the Leggett-Garg
inequality may be considered in the same way by consid-
ering a time-dependent unitary operation UðθÞ with
θ ¼ ωt. In what follows, we shall investigate specific
physical examples both for the Bell-CHSH and Leggett-
Garg inequalities.
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FIG. 1 (color online). Numerically optimized Bell function B of
generic entanglement of size factor n against (a) variance δ2 of the
final measurement and (b) variance Δ2 of the measurement refer-
ence. The dot-dashed line indicates the classical limit, 2. As the
coarsening degree δ2 of the final measurement increases in panel
(a), the Bell function decreases but this effect can be compensated
by increasing the size n of macroscopic entanglement (dotted
curve: n ¼ 2, dashed curve: n ¼ 3, solid curve: n ¼ 5). However,
panel (b) shows that the Bell function rapidly decreases indepen-
dent of n when the measurement reference is coarsened.
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Bell’s inequality with entangled photon number states.—We
first consider entangled number state of photons,

jψni ¼
1ffiffiffi
2

p ðjnHijnVi þ jnVijnHiÞ; (11)

where jnHi≡ jHi⊗n denotes horizontally polarized n
photons and jnVi≡ jVi⊗n vertically polarized. If we set
jnHi≡ joni; jnVi≡ jo−ni, this system is identical to
Eq. (4). We then need to find a physical example of a uni-
tary operation such as Eq. (5). We adopt the unitary oper-
ation, UpðθÞ ¼ exp½iθðjnHihnV j þ H:c.Þ�, a rotation about
the x axis of the Bloch sphere of a polarized number-state
qubit fjnHi; jnVig. As this unitary operation depends on
the photon number n, it needs the nonlinear Hamiltonian
Ĥn ¼ gðânHâ†nV eiϕ þ H:c.Þ to be realized. One can, in prin-
ciple, implement this type of highly nonlinear Hamiltonian
by decomposing it into a series of Gaussian unitaries and
cubic operations [16,17].
Considering a realistic condition of photon loss, we use a

dichotomic measurement operator

Op ¼
Xn
k¼1

ðjkHihkHj − jkVihkV jÞ þ j0ih0j (12)

and model an inefficient measurement using a beam splitter
before the final photodetector. With its efficiency η, a
photodetector for field mode a is described by a perfect
detector after a beam splitter B̂aa0 ðηÞ ¼ eζðâ†â0−ââ0†Þ=2,
where η ¼ ðcos ζÞ2 and a0 represents the vacuum mode.
The beam splitter parameter ζ, which determines the trans-
mission ratio η, represents the degree of coarsening in the
final detection. It was shown [5] that the Bell-CHSH
inequality is violated even by highly inefficient detectors,
i.e., η very small as n can be made sufficiently large. In
other words, inefficiency of the final detector can be com-
pensated by increasing number n of the entangled photon-
number state. However, when the fuzziness of the unitary
operation UpðθÞ is considered with a Gaussian noise as in
Eq. (6) without coarsening the final detection, it is straight-
forward to show that the correlation function is exactly the
same as Eq. (10).
It would be interesting to consider both the unitary trans-

form and the final detection being coarsened in order to
investigate more realistic scenarios. The correlation func-
tion can be obtained as

Eη;Δðθa; θbÞ ¼ hOp
η;ΔðθaÞ ⊗ Op

η;ΔðθbÞia;b; (13)

where

Op
η;ΔðθaÞ ¼

Z
dθPΔðθ − θaÞ½U†ðθÞB̂†

aa0O
pB̂aa0UðθÞ�

(14)

for mode a, and Op
η;ΔðθbÞ is likewise defined. We then

numerically calculate the optimized Bell function B for sev-
eral values of n and plot the results in Fig. 2. It shows that
the quantum-to-classical transition quickly occurs as fuzzi-
ness Δ of the unitary transform increases. The figure also
shows that the decreasing rate of the Bell function caused
by coarsening the unitary transform does not depend on the
value of η.

Bell’s inequality with entangled coherent states.—An
entangled coherent state [18,19] jψαi∝ jα;αiþj−α;−αi,
where j� αi are coherent states of amplitudes �α, is con-
sidered as a macroscopic quantum state when α becomes
large [20]. It is known [21] that effective rotations
UαðθÞ in the space spanned by the basis fjαi; j− αig,
required for a Bell’s inequality test, can be performed using
single-mode Kerr nonlinearities and displacement opera-
tions. A Bell test can then be performed using dichoto-
mized homodyne measurements, where an eigenvalue
þ1 (−1) is assigned for any positive (negative) outcomes
[4,5]. With homodyne efficiency η and Gaussian reference
coarsening of θ with standard deviation Δ, the correlation
function can be obtained in the same way described above
using the measurement operator Oh ¼ R∞

0 jxihxjdx −R
0−∞ jxihxjdx that replaces Op in Eqs. (13) and (14). Our

numerical results [22] presented in Fig. 3 confirm that
coarsening of the measurement reference cannot be made
up by increasing macroscopicity α [Fig. 3(b)], while it can
be made so when the measurement efficiency is coarsened
[Fig. 3(a)]. Here, we can consider another interesting
case where the angle of the homodyne detection, which
should also be controlled precisely as a measurement refer-
ence, is coarsened, which leads to qualitatively the same
conclusion [22].
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FIG. 2 (color online). Optimized Bell-CHSH function B for en-
tangled photon number states with number n against variance Δ2

of the Gaussian coarsening angle for different values of detection
efficiency (solid curve: η ¼ 1, dashed curve: η ¼ 0.95, dotted
curve: η ¼ 0.9) for (a) n ¼ 1, (b) n ¼ 2, (c) n ¼ 3. In the case
of n ¼ 3, all three curves virtually overlap.
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Leggett-Garg inequality with spin systems.—The temporal
correlation function Cab ≡ hQðtaÞQðtbÞi between ta and
tb for a dichotomic measurement operator Q forms the
Leggett-Garg inequality

K ≡ C12 þ C23 þ C34 − C14 ≤ 2; (15)

which is forced by macroscopic realism [14]. In the case of
the Leggett-Garg inequality that utilizes time sequential
measurements, it is natural to consider coarsening of the
temporal references. We shall consider coarsening of two
types of unitary operations for spin-j systems considered
in Refs. [2,6] with the dichotomized parity measurement
Q ¼ Pj

m¼−j ð−1Þj−mjmihmj, where jmi is a spin eigen-
state of the spin-j operator Ĵz. The first unitary operation
to be considered is UjðθÞ ¼ e−iθĴx with θ ¼ ωt and the
initial state is assumed to be the maximally mixed spin-j
system

Pj
m¼−j jmihmj=ð2jþ 1Þ. We again consider

Gaussian coarsening of the unitary operation applied to
the measurement operator Q as QΔðθ0Þ ¼

R
dθPΔðθ − θ0Þ

½U†
jðθÞQUjðθÞ�. The temporal correlation function between

ta and tb can be obtained as Cab ¼ pþaþb
þ p−a−b

− pþa−b−p−aþb
, where pþaþb

is the probability for measuring þ at
ta and then þ at tb, and so on. After some calculation, we
obtain

Cab ¼
Xj

m¼−j

Z
∞

−∞
dθ0PΔðθ0 − θb−aÞe2imθ0=ð2jþ 1Þ; (16)

where θb−a ¼ ωðtb − taÞ. We plot the numerically opti-
mized Leggett-Garg function in Fig. 4(a) and observe
the decrease of the Leggett-Garg function for any value
of j by increasing the coarsening degree of the measure-
ment reference. We note that the larger value of j leads
to more rapid destruction of the Leggett-Garg violation
by coarsening the measurement reference.
It was shown [6] that under a unitary operation that can

generate a macroscopic superposition, the Leggett-Garg

inequality is violated even with a coarsened measurement.
The correspondingunitaryoperation isUðθÞ¼exp½iθðjþji×
h−jjþH:c:Þ� with θ ¼ ωt and this is identical to the unitary
operation in Eq. (5) if j� ji are replaced with jo�ni. The
nonclassical Hamiltonian associated with such a unitary
operation is

Ĥ ¼ iωðj− jihþjj − jþ jih−jjÞ: (17)

Assuming an initial state jþ ji, we can calculate the temporal
correlation function Cab by the same procedure described
above, and it is found to be Cab ¼ e−Δ2=2 cos½ωðtb − taÞ�
by applying the same Gaussian coarsening of the measure-
ment reference. The temporal correlation function Cab is
obviously independent of j and the Leggett-Garg violation
disappear by coarsening of the unitary operation as plotted
in Fig. 4(b). Thus, the results for the spin system with
the Leggett-Garg inequality are consistent with the previous
ones.

Remarks.—There have been studies to explain the quan-
tum-to-classical transition: they have focused on either the
evolution of the state or the accuracy of the final measure-
ment resolution. However, the accuracy of the measure-
ment reference has not been properly considered in this
context. Our study consistently shows that when a measure-
ment reference such as the timing and the axis angle of the
measurement is coarsened, it cannot be compensated by
increasing “macroscopicity” of the quantum state or by
using an interaction to generate such macroscopic quantum
states. This is obviously not the case when only the meas-
urement resolution is coarsened. Our investigation covers a
wide range of physical systems from discrete to continuous
variable systems using various degrees of freedom such as
spins, polarizations, photon numbers, and quadrature var-
iables. Even though our discussions mainly adopt terminol-
ogies in optics, they can be generalized to various physical
systems such as atomic and mechanical systems [22].
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FIG. 4 (color online). (a) Optimized Leggett-Garg function K
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(b) Optimized Leggett-Garg fuction K against variance Δ2 of
Gaussian coarsening time under the nonclassical Hamiltonian.
As the temporal reference of the measurement is coarsened
by the increase of Δ2, violation of the Leggett-Garg inequality
disappears regardless of j.
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Our result provides new insight into the quantum-to-
classical transition from a different angle by revealing
the importance of the observer’s ability in controlling
the measurement reference, and, more generally, the impor-
tance of preciseness in quantum operations.
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Note added.—At the completion of our work, we

became aware of Ref. [23]. They considered superposi-
tions of coherent states and suggested a conjecture that
outcome precision or control precision has to increase in
order to observe quantum effects. While the system con-
sidered in Ref. [23] is different from ours, the results in
their work are consistent with our conclusions in empha-
sizing the importance of the “control precision” of
quantum measurements.
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