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A remarkably simple result is derived for the minimal time Tmin required to drive a general initial state to
a final target state by a Landau-Zener-type Hamiltonian or, equivalently, by time-dependent laser driving.
The associated protocol is also derived. A surprise arises for some states when the interaction strength is
bounded by a constant c. Then, for large c, the optimal driving is of type bang-off-bang and for increasing c
one recovers the unconstrained result. However, for smaller c the optimal driving can suddenly switch to
bang-bang type. We discuss the notion of quantum speed limit time.
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In various areas of physics the challenging task arises to
change a given initial quantum state to a prescribed final tar-
get state in a controlled and optimal way, e.g., in quantum
computation [1], in quantum optics for fast population trans-
fer [2], or for Bose-Einstein condensates [3]. One way to do
this is to use an arbitrarily slow change of the dynamical
parameters and the adiabatic theorem [4]. However, often
such an adiabatic approach may be too slow, and therefore
various protocols have been devised to speed up the process.
For example, the “transitionless tracking algorithm” [5] adds
a so-called counterdiabatic term to achieve adiabatic dynam-
ics with respect to the original Hamiltonian in shorter time,
while “shortcuts to adiabadicity” [3,6] does not follow
adiabatic states. For a comprehensive review of these and
other approaches see Ref. [7]. An experimentally important
requirement for such protocols is fidelity. Additional
requirements may be small energy input, robustness, or that
the target state is reached in the shortest time allowed by the
available dynamics. Other approaches consider unitary time-
development operators and aim to determine the optimal
dynamics that leads from an initialUð0Þ to a prescribed final
propagatorUF inminimal time [8].Theseapproacheswill not
be further considered here. Reference [9] used a variational
approach to determine time optimal Hamiltonians.
A recent paper [10] studied the experimental implemen-

tation of control protocols for the “simplest nonsimple
quantum problem” [11] in which two states are coupled
by a Landau-Zener (LZ)-type Hamiltonian of the form

H ¼ ΓðtÞσ3 þ ωðtÞσ1; (1)

where Γ corresponds to quasimomentum in Ref. [10].
In optical driving of a two-level system a similar
Hamiltonian applies, with Γ ¼ −Δ, the detuning, and
ω ¼ Ω the Rabi frequency. In the experiments of
Ref. [10] an effective two-level system was realized by
using Bose-Einstein condensates in an accelerated optical
lattice. For time-independent ω, numerical simulations
[10,12] for special parameter values and for special initial

and final ground states indicate that the shortest possible
time Tmin is achieved by the “composite pulse” protocol,
which represents a period with ΓðtÞ≡ 0 preceded and fol-
lowed by a δ-like pulse of pulse area π=4. This was borne
out by the experimental results of Ref. [10].
In this Letter we consider a two-level system with the

LZ Hamiltonian of Eq. (1) as well as a system driven by
a time-dependent laser amplitude and detuning. We derive
a remarkably simple expression, Eq. (22), for the minimal
time Tmin required to change an arbitrary initial state to a
final target state, under the condition that only interactions
of the LZ type as in Eq. (1) are considered. First the case is
treated where the interaction strength ΓðtÞ is not con-
strained in size and where ωðtÞ ¼ const ¼ ω. In this case
the optimal protocol is the composite protocol, i.e., initial
and final δ-like pulses and in between a period with
ΓðtÞ≡ 0 of length Tmin, as in the special case of the sim-
ulation in Refs. [10,12]. For initial and final states that are
ground states of an LZ Hamiltonian the pulse strengths
are �π=4, while in general they are different. When an
arbitrary ωðtÞ is allowed, the condition jωðtÞj ≤ ωmax is
imposed (otherwise Tmin → 0 as ω → ∞). Then the opti-
mal protocol is ΓðtÞ≡ 0, ωðtÞ≡ ωmax and again an initial
and final δ-like pulse.
Since arbitrarily large driving is a physical idealization

we also consider the constrained case jΓðtÞj ≤ c.
Surprisingly, now the optimal protocol depends on the
value of c. For simplicity we consider for the constrained
case only initial and final states that are eigenstates of
an LZ Hamiltonian, with Γ ¼ γin ¼ −γ and Γ ¼ γf ¼ γ,
γ > 0. It is shown that for c > ω2=γ the optimal protocol
is of bang-off-bang type, i.e., an initial and final period
with ΓðtÞ≡�c and in between a period with ΓðtÞ≡ 0,
as expected from the unconstrained case, and for c → ∞
one recovers the unconstrained result. However, if
c ≤ ω2=γ, the optimal protocol is of bang-bang type,
and there is no time period with ΓðtÞ≡ 0.
We also compare Tmin with the quantum speed limit

times Tqsl used in Refs. [10] and [12]. It is shown that
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Tmin is less or equal to Tqsl of Ref. [10]; in fact, it is equal to
the latter when initial and final state are ground states of
an LZ Hamiltonian, but for more general states Tmin can
be less than Tqsl of Ref. [10].

The control problem.—The aim is to find an optimal
driving ΓðtÞ such that the time-development operator
UHðt; 0Þ associated with H in Eq. (1) evolves an initial
state jψ ini at time t ¼ 0 to (a multiple of) a final state
jψfi at time T, i.e.,

UHðT; 0Þjψ ini ¼ κjψfi; (2)

in minimal time Tmin. If jψ ini and jψfi are normalized to 1,
κ is a phase factor; otherwise, it also contains the ratio of the
normalization factors. To determine the minimal time
required we use the Pontryagin maximum principle
(PMP) [13], which is explained further below.
As a consequence of the Eulerian rotation angles any

U ∈ SUð2Þ can be written in the form U ¼ expð−iσ3γ=2Þ
expð−iσ1β=2Þ expð−iσ3α=2Þ. Here it is convenient (but not
necessary) to rewrite this. Writing UHðt; 0Þ ¼ UðtÞ
expðiσ1π=4Þ, τ3 ≡ γðtÞ; τ1 ≡ βðtÞ þ π=2; and τ2 ≡ αðtÞ,
one arrives at

UHðt; 0Þ ¼ e−iσ3τ3ðtÞ=2 e−iσ1τ1ðtÞ=2 e−iσ2τ2ðtÞ=2; (3)

with as yet unkown functions τiðtÞ. This holds for any trace-
less Hamiltonian.We now differentiate both sides of Eq. (3),
equate the result withU

:

H ¼ −ifΓσ3 þ ωσ1gUH, andmulti-
ply by eiσ3τ3=2 from the left and by eiσ2τ2=2 eiσ1τ1=2 from the
right. This gives

τ
:
3σ3 þ τ

:
1σ1 þ τ

:
2e−iσ1τ1=2σ2eiσ1τ1=2

¼ 2eiσ3τ3=2fΓσ3 þ ωσ1ge−iσ3τ3=2:

Using e−iσ1τ1=2σ2eiσ1τ1=2 ¼ cos τ1σ2 þ sin τ1σ3, etc., one
obtains

τ
:
3σ3 þ τ

:
1σ1 þ τ

:
2ðcos τ1σ2 þ sin τ1σ3Þ

¼ 2Γσ3 þ 2ωðcos τ3σ1 − sin τ3σ2Þ: (4)

Since the σi’s are linearly independent this leads to a system
of three equations for τ

:
i

τ
:
1 ¼ 2ω cos τ3;

τ
:
2 ¼ −2ω sin τ3= cos τ1;

τ
:
3 ¼ 2Γþ 2ω sin τ3 sin τ1= cos τ1: (5)

These equations can also be used for an engineering type
approach by first prescribing a τ3ðtÞ, then solving for
τ1ðtÞ and τ2ðtÞ, and finally calculating ΓðtÞ from the last
equation, analogous to the approach in Ref. [14], which
is based on Lewis-Riesenfeld invariants. In Ref. [15] differ-
ent equations for a different model are considered.

Basically, the PMP deals with finding an optimal control
function u�ðtÞ such that a given cost function J of the form
J ¼ R t1

0 LðuðtÞ;…Þdt, where L is a function of uðtÞ and
some state functions and their derivatives, is minimized
for uðtÞ ¼ u�ðtÞ. Here, the time T required for the protocol
is to be minimized, J ¼ T, and since one can write
T ¼ R

T
0 1dt one has L≡ 1.

We first consider the case ωðtÞ≡ ω > 0. As the control
function we choose uðtÞ ¼ ΓðtÞ. The PMP then introduces
the “control Hamiltonian”

Hc ¼ −Lþ p1τ
:
1 þ p2τ

:
2 þ p3τ

:
3; L≡ 1; (6)

where pi ¼ piðtÞ and where one inserts τ
:
i from Eq. (5),

with Γ replaced by u. Then Hc assumes its maximum
for u ¼ u�, the optimal control, and in addition one
has p

:
i ¼ −∂Hc=∂τi when u ¼ u�. Moreover, Hc is con-

stant along the optimal trajectory, and this constant is
zero if the terminal time is free (i.e., not fixed), as in
the present case. In the following the asterisk on u� will
be omitted.
Since u is unrestricted, the maximality of Hc gives

∂Hc=∂u ¼ 0, and by Eq. (5) this gives ∂Hc=∂u ¼
p3 ¼ 0. Then p

:
i ¼ −∂Hc=∂τi gives

p
:
3 ¼ −∂Hc

∂τ3 ¼ 2ωp1 sin τ3 þ 2ωp2

cos τ3
cos τ1

¼ 0; (7)

and, thus,

0 ¼ 2ωp1 sin τ3 þ 2ωp2 cos τ3= cos τ1; (8)

p
:
1 ¼ −

∂Hc

∂τ1 ¼ 2ωp2 sin τ3 sin τ1= cos2 τ1; (9)

p
:
2 ¼ −

∂Hc

∂τ2 ¼ 0; p2 ¼ const ≡ c2: (10)

Since Hc ≡ 0 for the optimal trajectory one obtains

2ωp1 cos τ3 − 2ωc2 sin τ3= cos τ1 ¼ 1. (11)

Multiplying Eq. (8) by cos τ3 and Eq. (11) by sin τ3 and
then subtracting one obtains

2ωc2= cos τ1 ¼ − sin τ3: (12)

Equations (8) and (11) then become sin τ3ð2ωp1 −
cos τ3Þ ¼ 0 and cos τ3ð2ωp1 − cos τ3Þ ¼ 0, and therefore

2ωp1 ¼ cos τ3; p
:
1 ¼ −τ: 3 sin τ3=2ω: (13)

With Eq. (12) one obtains from Eq. (9) for p
:
1

p
:
1 ¼ − sin τ3 sin τ3 sin τ1= cos τ1: (14)
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Inserting for τ
:
3 from Eq. (5) one obtains Γ sin τ3 ¼ 0.

Hence, in any open interval in which Γ ≠ 0 one has
sin τ3 ¼ 0 and thus τ

:
3 ¼ 0, which then implies Γ ¼ 0.

Hence, in the unconstrained case the optimal choice for
Γ is ΓðtÞ≡ 0. Note that so far the initial and final state have
not come into play.
If one allows an arbitrary ωðtÞ, with jωðtÞj ≤ ωmax, one

can introduce ωðtÞ as a second control function. An argu-
ment similar to the one above gives as optimal choice
ΓðtÞ≡ 0 and ωðtÞ≡�ωmax, where one can restrict oneself
to the plus sign.

Minimal time.—When ΓðtÞ≡ 0 the time-development
operator becomes UHðt; 0Þ ¼ expf−iωσ1tg, which in gen-
eral does not satisfy Eq. (2). Therefore one needs initial and
final δ-like pulses of zero time duration (or, equivalently,
initial and final conditions for UH). In the initial and final
pulse, ω drops out when jΓj → ∞. The complete time-
development operator for the optimal protocol from 0 to
T is then

UHðT; 0Þ ¼ e−iαfσ3e−iωσ1Te−iαinσ3 : (15)

For a given initial and final state one now has to determine
all possible values of αin;f and T such that Eq. (2) holds and
then find the minimal T among them [16].
To illustrate the procedure we consider as a specific

example the case where jψ ini is the ground state of H−γ ¼−γσ3 þ ωσ1 and jψfi the ground state of Hγ ¼ γσ3 þ ωσ1,
with γ > 0. The lowest eigenvalue of H�γ is given by
λγ ¼ − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 þ ω2
p

and corresponding (non-normalized)
eigenvectors jλγi− and jλγiþ can be written as

jλγi− ¼ ωj0i þ ðλγ þ γÞj1i;
jλγiþ ¼ ωj0i þ ðλγ − γÞj1i: (16)

With Eq. (16) and expð−iωσ1TÞ ¼ cos ωT − iσ1 sin ωT
one finds by means of a straightforward calculation

UHðT; 0Þjλγi−
¼ fω cos ωTe−iðαinþαfÞ − iðλγ þ γÞ sin ωTeiðαin−αfÞgj0i
þ fðλγ þ γÞ cos ωTeiðαinþαfÞ

− iω sin ωTe−iðαin−αfÞgj1i: (17)

In order for this to equal a multiple of jλγiþ the ratios of
the respective first and second component have to be
equal, i.e.,

ω cos ωTe−iðαinþαfÞ − iðλγ þ γÞ sin ωTeiðαin−αfÞ

ðλγ þ γÞ cos ωTeiðαinþαfÞ − iω sin ωTe−iðαin−αfÞ
¼ ω

λγ − γ
;

(18)

which by a simple calculation gives

0 ¼ ωγ cos ωTðeiðαinþαfÞ þ e−iðαinþαfÞÞ
þ ω2 sin ωTiðeiðαin−αfÞ − e−iðαin−αfÞÞ
þ ωλγ cos ωTðeiðαin−αfÞ − e−iðαin−αfÞÞ: (19)

The imaginary part (in the last line) gives sinðαinþαfÞ¼0,
i.e., αf ¼ −αin þ nπ, and with this the real part gives

2γ cos ωTeinπ ¼ 2ω sin ωTeinπ sin 2αin: (20)

Hence, tan ωT ¼ γ=ω sin 2αin and the time duration T
becomes minimal for αin ¼ �π=4. Thus one obtains

tan ωTmin ¼ γ=ω: (21)

For γ=ω ¼ 2 this agrees with the experimental result of
Ref. [10] and also with the simulations.
For general initial and final (normalized) states jψ ini ¼

i0j0i þ i1j1i and jψ ini ¼ f0j0i þ f1j1i, where σ3j0; 1i ¼
�j0; 1i, one obtains by the same procedure the amazingly
simple result

cos ωTmin ¼ jf0i0j þ jf1i1j: (22)

If also ωðtÞ is time dependent, with jωðtÞj ≤ ωmax, the
minimal time is obtained by replacing ω by ωmax in
Eq. (22). For optical driving of a two-level system, with
fixed detuning Δ and the Rabi frequency ΩðtÞ as an
unconstrained control, ω in Eq. (22) is replaced by Δ
and the components ik; fk by the components with
respect to the eigenvectors of σ1. Note that Tmin is sym-
metric under the interchange of initial and final state.
Also, Tmin ¼ 0 if and only if jf1jji0j ¼ jf0jji1j, i.e.,
jfjj ¼ μjijj for some μ > 0.
The initial and final δ pulse depend in general on the

relative phases of i0 and i1 and of f0 and f1 and on the
ratios of the components. In particular, if jψ ini and jψfi
are the ground state of Hγin and Hγf , respectively, then
one can choose αf ¼ −αin and αin ¼ π=4 for γin < γf
and αin ¼ −π=4 for γin > γf.

Constrained driving.—Let jΓðtÞj≡ juðtÞj ≤ c. From
Eqs. (5) and (6), the only term in Hc that contains u is
of the form 2p3u. If a maximum of Hc is reached for u
lying in the interior of the interval [−c,c] then
∂Hc=∂u ¼ 0, and then ΓðtÞ≡ 0, as before. If it lies on
the boundary then u ¼ c or u ¼ −c. Therefore, since
one expects that the initial and final δ pulses are replaced
by a time development of finite duration, we make an
ansatz with an initial period of length Tc ≥ 0 with
ΓðtÞ ¼ c, then a period of length Toff ≥ 0 with ΓðtÞ ¼ 0,
and a final period of length T−c ≥ 0 with ΓðtÞ ¼ −c,
where some of the three times may be zero. The total time
T ¼ Tc þ Toff þ T−c should be minimal, with all three
terms non-negative.
The Hamiltonians in the three respective time periods are

�cσ3 þ ωσ1 and ωσ1, which gives
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UHðT; 0Þ ¼ e−ið−cσ3þωσ1ÞT−c e−iωσ1Toff e−iðcσ3þωσ1ÞTc :

Here we consider only initial and final states jλγi�. The
same procedure as above then shows that T−c ¼ Tc and
that Toff can be expressed as a function of Tc so that
the total time T becomes a function of Tc. This latter
function has to be minimized. For c ≥ ω2=γ one obtains
Tmin ¼ 2Tc þ Toff with

Tc ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ ω2
p arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ ω2

2cðcþ γÞ

s
; (23)

Toff ¼
1

ω
arctan

cγ − ω2

ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 2cγ − ω2

p . (24)

For c → ∞ Eq. (24) becomes Eq. (21) of the unconstrained
case. Furthermore, as c→∞,Tc → 0 and ðc2 þ ω2Þ1=2Tc →
π=4 so that the initial and final periods approach a δ pulse
in σ3 of strength �π=4, as in the unconstrained case.
For c ≤ ω2=γ one has Toff ¼ 0 and

TminðcÞ ¼ 2Tc ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ ω2
p arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðc2 þ ω2Þ
2ω2ðcþ γÞ

s
: (25)

Thus for c > ω2=γ and for the states considered here,
the optimal protocol is of bang-off-bang type, while for
c ≤ ω2=γ it is bang-bang.
If there is an experimental switching time ϵ > 0 for Γ

from c to 0 and 0 to −c, with ωϵ, cϵ ≪ 1, and if one retains
Tc and Toff from above, then for the fidelity F one has
F > 1 − 2ðωϵþ cϵÞ, instead of 1. This bound is indepen-
dent of the shape of the switching function. Finite coherence
times much longer than Tmin also have only a small effect on
F . Instead of keeping Tc and Toff from Eqs. (23) and (24)
one can change them to increase the fidelity to 1, up to terms
of second order in ωϵ and cϵ. For example, for a linear
switch pulse one just has to use Tc − ϵ=2 and Toff − ϵ.
In Fig. 1, ωTmin is plotted as a function of c=ω for

γ=ω ¼ 2, the off duration Toff , the asymptote arctan γ=ω
for the unconstrained case, and 2Tc, the double of the
corresponding individual bang duration.
Quantum speed limit time.—For a time-independent

Hamiltonian the state overlap jhψ tjψ0ij is bounded by
the Fleming-Bhattacharyya bound [17], t ≥ arccos
jhψ0jψ tij=ðΔE=ℏÞ, with ΔE the energy variance of the
state. For the time-dependent LZ Hamiltonian in Eq. (1)
and initial and final state momentary eigenstates of the
LZ Hamiltonian, Ref. [10] used a quantum speed limit time
Tqsl, with cos ωTqsl ¼jhψfjψ inij, while Ref. [12] suggested
an expression with ω replaced by ΔE0=ℏ, the energy vari-
ance of the initial state with respect to H0 ¼ ωσ1. Since
ΔE0=ℏ is strictly smaller than ω, the quantum speed limit
time used in Ref. [12] is larger than Tqsl of Ref. [10]. Using
Eq. (22) one finds

cos ωTqsl ¼ jf̄0i0 þ f̄1i1j ≤ jf0i0j þ jf1i1j ¼ cos ωTmin;

(26)

and since the cosine is strictly decreasing in ½0; π=2� this
shows that one always has Tmin ≤ Tqsl.
Moreover, one has Tmin ¼ Tqsl if and only if the relative

phase of f0 and f1 and that of i0 and i1 are equal since this
is the condition for the equality sign to hold in the estimate
in Eq. (26). This is true in particular for ground states of
Hγin and Hγf , but not if one is a ground state and the other
the excited state. For example, if jψ ini and jψfi are the
ground state and excited state of Hγ , for a fixed γ, then

Tqsl ¼ π=2ω, while Tmin ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ ω2

p
, which is less

than Tqsl.
Discussion.—We have shown above that the speed limit

time Tqsl used in Ref. [10] coincides with Tmin provided
one considers only momentary eigenstates of an LZ
Hamiltonian. However, for more general initial and final
states the time Tmin from Eq. (22) for the optimal protocol
may actually be smaller than Tqsl. Therefore, for more gen-
eral initial and final states the particular expression for Tqsl
in Ref. [10] does not seem to be appropriate, and neither
does that of Ref. [12] since it is always larger than the
former. A more natural choice as a quantum speed limit
time seems to be Tmin.
It should be noted that Tmin goes to zero for increasing ω

and, therefore, a universal quantum speed limit time would
be zero. Hence, a meaningful quantum speed limit time

FIG. 1. ωTmin, ωToff , and 2ωTc, the double of the correspond-
ing bang duration ωTc, as a function of c=ω for γ=ω ¼ 2. For
c → ∞ one sees that ωTmin approaches the unconstrained value
arctan γ=ω. For c=ω ≤ ω=γ ¼ 0.5 there is no period with
ΓðtÞ≡ 0, i.e., Toff ¼ 0, so that for these values of c the protocol
is of bang-bang type.
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should only be defined with respect to a given class of
available Hamiltonians, such as above for the LZ type
Hamiltonians. This is exemplified in Fig. 1, where the min-
imal time depends on the strength of the available driving.
It would be interesting to find an expression that applies to
a Hamiltonian class as large as possible.
Acknowledgment.—I would like to thank O. Morsch and

J. G. Muga for stimulating discussions.

[1] M. Nielsen and I. Chuang, Quantum Computation and
Quantum Communication (Cambridge University Press,
Cambridge, England, 2000).

[2] Compare, e.g., S. Guerin, V. Hakobyan, and H. R. Jauslin,
Phys. Rev.A 84, 013423 (2011), and references therein.

[3] J. G. Muga, X. Chen, A. Ruschhaupt, and D. Guery-Odelin,
J. Phys. B: At. Mol. Opt. Phys. 42, 241001 (2009), and
references therein.

[4] M. Born and V. A. Fock, Z. Phys. 51, 165 (1928).
[5] M. Demiplak and S. A. Rice, J. Phys. Chem. A 107, 9937

(2003); M. V. Berry, J. Phys. A 42, 365303 (2009).
[6] X. Chen A. Ruschhaupt, S. Schmidt, A. del Campo,

D. Guery-Odelin, and J. G. Muga, Phys. Rev. Lett. 104,
063002 (2010).

[7] E. Torrontegui, S. Ibanez, S. Martinez-Garaot, M.
Modugno, A. del Campo, D. Guery-Odelin, A. Ruschhaupt,
X. Chen, and J. G. Muga, Adv. At. Mol. Opt. Phys. 62, 117
(2013).

[8] Compare, e.g., N. Khaneja, R. Brockett, and S. J. Glaser,
Phys. Rev. A 63, 032308 (2001); N. Khaneja, S. J. Glaser,
and R. Brockett, Phys. Rev. A 65, 032301 (2002); D. Dong
and I. R. Petersen, IET Control Theory Appl.. 4, 2651
(2010).

[9] A. Carlini, A. Hosoya, T. Koike, and Y. Okudaira, Phys.
Rev. Lett. 96, 060503 (2006). The class of Hamiltonians
considered there is not the LZ Hamiltonian of Eq. (1).

[10] M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E.
Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R.
Mannella, and O. Morsch, Nat. Phys. 8, 147 (2012).

[11] M. V. Berry, Ann. N.Y. Acad. Sci. 755, 303 (1995).
[12] T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero,

V. Giovannetti, and G. E. Santoro, Phys. Rev. Lett. 103,
240501 (2009).

[13] L. M. Hocking, Optimal Control (Clarendon, Oxford
1991).

[14] A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, New
J. Phys. 14, 093040 (2012); M.-A. Fasihi, Y. Wan, and
M. Nakahara, J. Phys. Soc. Jpn. 81, 024007 (2012).

[15] D. E. Chang and R. Sepulchre, Dynamics of Continuous,
Discrete and Impulsive Systems, Series B, 14, 575 (2007).

[16] Alternatively, this can also be done on the Bloch sphere by
writing Eq. (15) in terms of rotations, as pointed out by a
referee. The computational efforts are comparable.

[17] G. N. Fleming, Nuovo Cimento A.16, 232 (1973);
K. Bhattacharyya, J. Phys. A 16, 2993 (1983); For
extensions, compare S. Deffner and E. Lutz, Phys. Rev. Lett.
111, 010402 (2013), and references therein.

PRL 111, 260501 (2013) P HY S I CA L R EV I EW LE T T ER S
week ending

27 DECEMBER 2013

260501-5

http://dx.doi.org/10.1103/PhysRevA.84.013423
http://dx.doi.org/10.1088/0953-4075/42/24/241001
http://dx.doi.org/10.1088/0953-4075/42/24/241001
http://dx.doi.org/10.1007/BF01343193
http://dx.doi.org/10.1021/jp030708a
http://dx.doi.org/10.1021/jp030708a
http://dx.doi.org/10.1088/1751-8113/42/36/365303
http://dx.doi.org/10.1103/PhysRevLett.104.063002
http://dx.doi.org/10.1103/PhysRevLett.104.063002
http://dx.doi.org/10.1016/B978-0-12-408090-4.00002-5
http://dx.doi.org/10.1016/B978-0-12-408090-4.00002-5
http://dx.doi.org/10.1103/PhysRevA.63.032308
http://dx.doi.org/10.1103/PhysRevA.65.032301
http://dx.doi.org/10.1049/iet-cta.2009.0508
http://dx.doi.org/10.1049/iet-cta.2009.0508
http://dx.doi.org/10.1103/PhysRevLett.96.060503
http://dx.doi.org/10.1103/PhysRevLett.96.060503
http://dx.doi.org/10.1103/PhysRevLett.96.060503
http://dx.doi.org/10.1038/nphys2170
http://dx.doi.org/10.1111/j.1749-6632.1995.tb38974.x
http://dx.doi.org/10.1103/PhysRevLett.103.240501
http://dx.doi.org/10.1103/PhysRevLett.103.240501
http://dx.doi.org/10.1088/1367-2630/14/9/093040
http://dx.doi.org/10.1088/1367-2630/14/9/093040
http://dx.doi.org/10.1143/JPSJ.81.024007
http://dx.doi.org/10.1007/BF02819419
http://dx.doi.org/10.1088/0305-4470/16/13/021
http://dx.doi.org/10.1103/PhysRevLett.111.010402
http://dx.doi.org/10.1103/PhysRevLett.111.010402

