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We introduce a new N ¼ 1 no-scale supergravity model with F- and D-term breaking. It contains a

single chiral supermultipletT and a single U(1) vector multipletU, gauging a nonanomalous axionic shift

symmetry. Both supersymmetry and the gauge symmetry are spontaneously broken, with the spin-3=2,

spin-1, and spin-1=2masses sliding along a classical flat direction, with a single real massless scalar in the

spectrum. The other degrees of freedom are absorbed by the massive gravitino and vector. We extend our

model, under very mild conditions, to general gauge groups and matter content.
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Introduction.—The two outstanding unsolved hierarchy
problems in the physics of the fundamental interactions are
the smallness of the present vacuum energy density and of
the Fermi scale of weak interactions with respect to the
Planck scale of gravitational interactions. A motivated and
realistic theoretical context where both problems can be
addressed, although not completely solved, is N ¼ 1,
D ¼ 4 supergravity coupled to gauge and matter multiplets
[1]. Being nonrenormalizable and nonunique, N ¼ 1 su-
pergravity must be interpreted as the low-energy effective
theory of a more fundamental theory, possibly string the-
ory, which may eventually dictate its field content, defining
functions and counterterms. But the presence of (super)
gravitational interactions is the source of a negative semi-
definite contribution to the scalar potential, which makes it
possible, at least in principle, to decouple the vacuum
energy from the supersymmetry-breaking scale.

In generic supergravity models, breaking supersymme-
try on a background sufficiently flat to be realistic requires
a huge fine-tuning, already at the classical level. A remark-
able exception is provided by the so-called no-scale mod-
els [2], where at the classical level the potential is positive
semidefinite, supersymmetry is broken with vanishing
vacuum energy on a continuum of degenerate vacua, and
the gravitino mass, setting the supersymmetry-breaking
scale in Minkowski space, slides along a flat direction.
This leaves the hope that, if some special class of no-scale
models can be found for which, with an appropriate ultra-
violet completion, quantum corrections are particularly
benign [3], such quantum corrections could generate the
desired hierarchies [4].

In all the N ¼ 1 no-scale models considered so far,
supersymmetry breaking is entirely due to the auxiliary
fields of the chiral multiplets (pure F-term breaking), and
there is at least one complex flat direction at the classical
level. The simplest and best known example is the original
model of [2]. In this Letter, we introduce a new class of no-
scale models with mixed F- and D-term breaking, and a
single real flat direction of the classical potential. We begin

by recalling the basic formalism of N ¼ 1 supergravity
with vector and chiral multiplets, and the features of the
no-scale models considered so far. We then introduce the
simplest example of our new class of no-scale models,
where supersymmetry and a U(1) axionic gauge symmetry
are both spontaneously broken at the same scale, sliding
along a real flat direction corresponding to the only mass-
less particle in the spectrum.We also show how the relation
between the constant superpotential and the gauge
coupling constant, which is essential for the no-scale prop-
erties, can be obtained by a consistent truncation from a
one-parameter N ¼ 2 no-scale model. We conclude by
showing how our simple model can be generalized, under
very mild conditions, to include arbitrary gauge groups and
chiral multiplet content, and comment on possible future
developments.
Basics of N ¼ 1, D ¼ 4 supergravity.—An N ¼ 1,

D ¼ 4 supergravity model with chiral multiplets �i �
ðzi; c iÞ and vector multiplets Ua � ð�a; Aa

�Þ is specified

by three ingredients [1]. The first is the real and gauge-
invariant function

G ¼ K þ logjWj2; (1)

where K is the real Kähler potential and W the holomor-
phic superpotential. We are not interested here in the
gauging of the R symmetry, leading to constant Fayet-
Iliopoulos terms; thus, we can assume that both K and W
are gauge invariant. The second is the holomorphic gauge
kinetic function fab. Generalized Chern-Simons terms may
also be needed, but they will not play any role in this Letter.
The third are the holomorphic Killing vectors Xa ¼
Xi
aðzÞð@=@ziÞ, which generate the analytic isometries of

the Kähler manifold for the scalar fields that are gauged
by the vector fields. In the following, for simplicity, we will
always take G, fab, and Xa as functions of the complex
scalars zi rather than the superfields �i.
The gauge transformation laws and covariant derivatives

for the scalars in the chiral multiplets read
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�zi ¼ Xi
a�

a; D�z
i ¼ @�z

i � Aa
�X

i
a; (2)

where �a are real parameters. The scalar potential is made
of three contributions, controlled by the auxiliary fields of
the gravitational, chiral, and vector multiplets:

V ¼ VG þ VF þ VD; VG ¼ �3eG � 0;

VF ¼ eGGiGi � 0; VD ¼ 1

2
DaD

a � 0:
(3)

In the above equations, eG is the field-dependent gravitino
mass term m2

3=2, Gi ¼ @G=@zi, scalar field indices are

raised with the inverse Kähler metric Gi �k, gauge indices
are raised with ½ðRefÞ�1�ab, and

Da ¼ iGiX
i
a ¼ iKiX

i
a: (4)

For a linearly realized gauge symmetry, iKiX
i
a ¼

�KiðTaÞikzk, while for an axionic U(1) symmetry, Xi
a ¼

iqia, where q
i
a is a real constant, and we obtain the so-called

field-dependent Fayet-Iliopoulos terms. Notice that D

terms are actually proportional to F terms, Fi ¼ eG=2Gi,
which implies the well-known fact that there cannot be
pure D breaking of supergravity in Minkowski space.

No-scale models with pure F breaking.—The simplest
no-scale model with pure F breaking [2] contains just a
chiral multiplet T � ðT; ~TÞ, with Kähler potential

K ¼ �3 logðT þ �TÞ; (5)

and a T-independent superpotential,

W ¼ W0: (6)

Since GTGT ¼ 3, V ¼ VG þ VF ¼ 0, and supersymmetry
is broken with vanishing vacuum energy for any constant
value of the massless complex scalar T ¼ tþ i� (t > 0).
The Goldstino ~T is absorbed by the gravitino, with m2

3=2 ¼
jW0j2=ð8t3Þ, so that t plays the role of a ‘‘dilaton,’’ setting
the scale of the only nonvanishing mass term.

The model can be easily generalized to include addi-

tional chiral multiplets �k̂ and vector multiplets Ua, as
long as the equations hGk̂i ¼ hDai ¼ 0 admit solutions.

No-scale models can also be considered, where several
fields �� take part in the exact cancellation between VG

and VF, thanks to the identityG
�G� ¼ 3. In such a case we

can split the chiral multiplets as �i ¼ ð��;�k̂Þ, and again
the no-scale properties are preserved as long as the equa-
tions hGk̂i ¼ hDai ¼ 0 admit solutions.

New model with F and D breaking.—Consider a model
with a vector multiplet U� ð�; A�Þ, a chiral multiplet

T � ðT; ~TÞ, and Kähler potential

K ¼ �2 logðT þ �TÞ; (7)

where, in contrast with the previous section, � is now an
‘‘axion’’ that shifts under the U(1) isometry gauged by the
vector multiplet. The corresponding holomorphic Killing
vector is just an imaginary constant,

XT ¼ iq; ðq 2 RÞ: (8)

The most general form of the superpotential invariant
under the gauged U(1) is then the one of Eq. (6). Notice
that the gauged U(1) is not an R symmetry, in contrast with
similar models previously considered in Refs. [5,6]. Notice
also that both fermions ~T and � are neutral under gauge
transformations; therefore, there cannot be pure gauge
Uð1Þ3 or mixed U(1) anomalies unless we add other mul-
tiplets containing fermions with U(1) charges. For the
gauge kinetic function, we take a positive real constant:

f ¼ 1

g2
: (9)

The scalar potential of (3) is then the sum of

VG ¼�3jW0j2
4t2

; VF ¼ jW0j2
2t2

; VD ¼ g2q2

2t2
: (10)

As required by gauge invariance, V does not depend on �:
the axion is absorbed by the massive U(1) vector boson via
the Higgs effect [7]. However, VG, VF, and VD all depend
nontrivially on t. Constant W, constant f, and the (�2)
factor multiplying the logarithm in K are essential in
ensuring that all three terms in (10) have the same t
dependence. In particular, if we choose

jW0j ¼
ffiffiffi
2

p
gjqj; (11)

there is an exact cancellation and V ¼ VG þ VF þ VD ¼ 0.
The gauge symmetry and supersymmetry are broken

on Minkowski space at all vacua, with the would-be
Goldstone boson and fermion given by � and by a linear
combination of ~T and �, respectively. The only massless
particle in the spectrum is the real scalar t, and the non-
vanishing squared masses are

m2
3=2 ¼

g2q2

2t2
; m2

1 ¼
g2q2

t2
; m2

1=2 ¼
g2q2

2t2
; (12)

for the gravitino, the vector, and the spin-1=2 fermion
orthogonal to the would-be Goldstino, respectively.
Superficially, we may think that the choice of (11) is a

fine-tuning. However, to argue that this is not the case, we
recall that N ¼ 1 superpotentials are often originated from
the gauge interactions of some compactified higher-
dimensional supergravity or superstring theory. Also, it is
well known that in extended supergravities all potential
terms arise from gauge interactions, and it is not difficult to
find examples of N ¼ 1 F-term potentials arising from
N > 1 D-term potentials. To fully convince the reader,
we now build an explicit N ¼ 2 no-scale model, with a
single gauge coupling constant g, which admits a consis-
tent truncation to our new N ¼ 1 no-scale model and
explains the relation (11).
N ¼ 2 to N ¼ 1 truncation.—Inspired by [8], we con-

struct a simple N ¼ 2 no-scale model that, in addition to
the gravity multiplet fg��; c �A; A

0
�g, contains one vector
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multiplet fA1
�; �

Ag and one hypermultiplet fqu; 	�g,
charged with respect to a Uð1Þ � Uð1Þ gauge group (A ¼
1, 2, u ¼ 0; . . . ; 3, � ¼ 1, 2). The complex scalar of the
vector multiplet describes the SUð1; 1Þ=Uð1Þmanifold with
prepotential

FðXÞ ¼ � i

2
½ðX0Þ2 � ðX1Þ2�: (13)

Introducing z � X1=X0, the associated Kähler potential is
KV ¼� logi½X� �F� � �X�F�� ¼ � log½2ð1� jzj2Þ�, where
F� � @�F (� ¼ 0, 1). The scalars of the hypermultiplet
are described by the quaternionic-Kähler manifold
SOð4; 1Þ=SOð4Þ, with metric

ds2 ¼ huvðqÞdqudqv ¼ 1

2ðb0Þ2 ðdb
0db0 þ dbxdbxÞ (14)

(x ¼ 1, 2, 3), and SU(2) connection !x
y ¼ �x

y=b
0. The two

vector fields gauge two of the three translational isometries
of (14). This produces, in N ¼ 1 normalization, a scalar
potential [9]

V

g2
¼ 4L� �L�ku�k

v
�huv þ ðgz�zf�z �f��z � 3 �L�L�ÞPx

�P
x
�;

(15)

where ku� are the Killing vectors of the gauged isometries,

Px
� are the corresponding prepotentials, L� � eKV=2X�,

and f�z � eKV=2DzX
�. We find that the potential vanishes

identically for the choice

ku0 ¼ q�u2; ku1 ¼ q�u3: (16)

In fact, the prepotentials satisfy Px
� ¼ !x

uk
u
� and the three

terms in (15) become proportional to each other, so that
V ¼ 0.

We now consistently truncate this model from N ¼ 2 to
N ¼ 1 following the procedure outlined in [10]. All con-
sistency conditions are fulfilled by imposing

c �2 ¼ 	1 ¼ �2 ¼ A0
� ¼ b1 ¼ b2 ¼ z ¼ �2 ¼ 0; (17)

so that in theN ¼ 1model only the gravitational multiplet,
one vector multiplet, and one chiral multiplet survive.
Since the graviphoton is projected out, only the gauging
of the b3 shift symmetry survives in the truncated model.
This is consistent with the fact that the quaternionic-Kähler
manifold is truncated to the SUð1; 1Þ=Uð1Þ manifold with
Kähler potential (7), after the identifications t ¼ b0 and
� ¼ b3. Also, by applying (17), the scalar field z of the
N ¼ 2 vector multiplet is projected out and the gauge
kinetic matrix reduces to the constant value N jz¼0 ¼
diagð�i;�iÞ, so that we can identify the N ¼ 1 gauge

kinetic function as f ¼ �i=g2 �N 11. We conclude that
the resulting N ¼ 1 model is precisely the one presented
in the previous section, where the G function (1) and theD
term (4) can be identified adapting the general relations
given in [10] to our conventions:

eK=2W ¼ g½L0P2
0�z¼b1¼b2¼0 ¼ gqffiffiffi

2
p

t
; (18)

D ¼ ½P2
3�z¼b1¼b2¼0 ¼ q

t
: (19)

It is easy to see that these expressions reproduce the N ¼ 1
model described in the previous section, including condi-
tion (11). Notice that, in contrast with the models consid-
ered in [11], for thisN ¼ 2model we have no choice on the
number ofN ¼ 1 chiral and vector multiplets surviving the
truncation.
Generalizations and discussion.—Our simple newN¼1

no-scale model can be easily generalized.
We have checked that, keeping the same field content

and suitably adapting the gauge transformation properties
when the gauged U(1) becomes an R symmetry, the more
general class of Kähler potentials K ¼ �p logðT þ �TÞ þ
�þ 
ðT þ �TÞ, superpotentials W ¼ W0e

��T , gauge ki-
netic functions f ¼ �þ �T, inspired by [6,7,12], cannot
generate no-scale models inequivalent to the one already
discussed above, corresponding to p ¼ 2, � ¼ 
 ¼ � ¼
� ¼ 0, � ¼ 1=g2.
The inclusion of additional gauge multiplets is straight-

forward, and we can promote the gauge group from the
U(1) gauged by the single vector multiplet U to Uð1Þ �G,
gauged by the vector multipletsUa ¼ ðU;UâÞ. We can also

enlarge the set of chiral multiplets �i ¼ ðT ; �k̂Þ, as long
as the �k̂ do not transform under the original U(1).
To preserve the crucial features of our simple new no-

scale model with F and D breaking, but make it more
realistic, we can proceed as in the case of the no-scale
models with pure F breaking. We can extend the Kähler
potential to

K ¼ �2 logðT þ �TÞ þ�KðT þ �T;�k̂; ��
�̂kÞ; (20)

the superpotential to

W ¼ W0 þ�Wð�k̂Þ; (21)

and we can introduce a gauge kinetic function for the
gauge group factor G of the form

fâ b̂ ¼ fð0Þ
â b̂
ð�k̂Þ þ fð1Þ

â b̂
ð�k̂ÞT: (22)

The conditions to be satisfied by the modifications
[Eqs. (20)–(22)] are that gauge invariance is preserved, at
the classical and at the quantum level, that the equations
hGk̂i ¼ hDâi ¼ 0 admit solutions in field configuration

space, and that h�Wi ¼ h�Ki ¼ 0 upon minimization.

For example, if we think of the �k̂ and Uâ as the chiral
and vector multiplets of some supersymmetric extension of
the Standard Model, and we work in the approximation of

small field fluctuations around hzk̂i ¼ 0, we can choose

�K ¼ X

k̂

jzk̂j2ðT þ �TÞnk̂ ; ðnk̂ 2 ZÞ; (23)
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�W ¼ X

k̂ l̂ m̂

dk̂ l̂ m̂z
k̂zl̂zm̂; fâ b̂ ¼ �â b̂T: (24)

Also in this case, for suitable values of the new parameters,
there is a real valley of degenerate minima of the full
potential V, which satisfy the consistency conditions men-
tioned above and keep the good features of the simple
model. For the given choice, the supersymmetry-breaking
scalar and gaugino masses for the additional chiral and
vector supermultiplets would be

~m 2
k̂
¼ nk̂m

2
3=2; M2

â ¼ 4m2
3=2: (25)

Note that, in both simple no-scale models considered in
this Letter, the old and the new one, StrM2 evaluated along
the flat direction is proportional to m2

3=2 via an integer

numerical constant. Indeed, the spectrum in (12) gives
StrM2 ¼ 0, but for the reasons explained below, we do
not attach special importance to this. Having StrM2 ¼
nm2

3=2 (n 2 Z) leaves open the possibility that, once addi-

tional sectors are introduced to make the model realistic,
with supersymmetry-breaking squared mass splittings
also proportional to m2

3=2, the condition StrM2 ¼ 0 can

be fulfilled. This would ensure the absence of quadratically
divergent one-loop corrections to the effective potential,
which are the most serious sources of vacuum instability.

The results of this Letter call for further investigations in
more realistic models. For example, the results of the first
run of the LHC suggest a little hierarchy between the mass
scales of the Higgs, W, and Z bosons on one side and the
supersymmetric particles and the additional Higgs bosons
on the other side. Can such a little hierarchy be embedded
in a no-scale model with only two classical real flat direc-
tions, controlling the two mass scales above? Can we then
generate both scales by dimensional transmutation, taking
into account logarithmic quantum corrections in the effec-
tive supergravity and suitably parametrizing our ignorance
of the corrections coming from its ultraviolet completion?
We believe that the new no-scale models introduced in this
Letter provide new possibilities to address these intriguing
questions, and work along these lines is in progress [13].
Finally, it would be interesting to understand whether our
models can actually originate from string- or M-theory
compactifications with fluxes, since this would embed
them in a context where all perturbative quantum correc-
tions could eventually be calculable.

However, the above investigations go beyond the aim of
this Letter and are left for future work.
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