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Superfluidity and Space-Time Translation Symmetry Breaking
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I present a simple model that exhibits a temporal analogue of superconducting crystalline (Larkin-
Ovchinnikov-Ferrell-Fulde) ordering, with a time-dependent order parameter. I sketch designs for
minimally dissipative ac circuits, all based on time translation symmetry (7) invariant dynamics,
exploiting weak links (Josephson effects). These systems violate 7 spontaneously. I also discuss effective
theories of that phenomenon, and space-time generalizations.
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Recently there has been considerable interest in the
possibility of spontaneous breaking of time translation
symmetry 7 [1-5]. Here I bring in ideas from superfluidity
which both establish connections with central ideas of that
field and widen the experimental possibilities significantly.

Microscopic model.—The energy functional
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describes superconductors with wavelike or crystalline
(Larkin-Ovchinnikov-Ferrell-Fulde [6,7], or “LOFF”)
condensates. In the absence of a vector potential we will
have, upon minimizing the energy in Eq. (1),

dE) =k + b )

for some wave vector k with k* = {. Several possible
realizations of LOFF states have been identified [8—12].

It is natural to consider the possibility of a temporal
analogue to the spatial behavior indicated in Eq. (2). What
we want, is that the pairing occurs between states separated
by a characteristic frequency. For superconducting systems
the absolute frequency dependence is rendered ambiguous
by the possibility of time-dependent gauge transforma-
tions, or stated more simply by the lack of a natural zero
of energy, so it is simplest to use the language of particle-
hole pairing.

For orientation purposes, let us begin by further special-
izing to the transparent case of two flat bands with energies
g, < &,, and the Hamiltonian
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define Hermitian pseudospin operators S;, S,, S3 that
satisfy the algebra of angular momentum and generate
isospinlike rotations between the a and b modes.

(&)

Since N, 5’2, and §; commute, we can construct the
minimum energy states for H, given N, by maximizing S
(so § = N/2) and choosing a state with definite S;. If S5 is
also allowed to vary, the minimum will occur for

(Ss) = max(— 824‘g &1 _ g) ©)

(The second alternative on the right-hand side, which
saturates the population of the a modes, is essentially
trivial.) On the other hand it can be appropriate to hold
the expectation value of S; fixed. We can imagine, for
example, that the @ and b modes correspond to states in
distinct layers, whose total occupations can be fixed inde-
pendently. (Note that the assumed interaction term does not
require interlayer tunneling—this is just another way of
saying that it commutes with S3.) As we can see by
rearranging

a;(rbkb;ral; - a,:ralb?bk (7)

the assumed interaction corresponds, roughly, to an effec-
tive repulsion between density waves that does not depend
on momentum transfer.

Now we can follow the classic BCS procedure, postulat-
ing a symmetry-breaking condensate. In this procedure, we
assume the ansatz

(w, 0184 |, 0) = Age' ®)

with A a number, ultimately fixed self-consistently by the
gap equation. Since

N = blb, +Yala, 4)
k k [H,S:]= (e, — &)S; +2g(8535: +5:53) (9
is the total occupation number and and
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consistent classical evolution for 6 requires
0 =&, — & + 4g(S3). (11

This vanishes if (S5) is fixed nontrivially by Eq. (6), but not
if that expectation value is pinned at a different value.

In the pseudospin formalism, this time dependence has a
simple interpretation: The condensate is an effective spin
of fixed magnitude at a fixed angle to the Z axis, and the
&, — & term supplies an effective magnetic field in the 2
direction, which induces precession.

The BCS condensation ansatz is overkill for this simple
model, where all states with the total spin and expectation
value of §3 are degenerate eigenstates. Its virtue is its
ability, at the price of more complicated algebra, to accom-
modate more complex, momentum-dependent energies
and interactions than assumed in Eq. (3). One expects
qualitative aspects of spontaneous symmetry breaking to
survive such generalizations. One can also consider
bosonic systems along the same lines. Indeed, related
techniques have been applied to discuss dynamic magnon
condensation in liquid He? [13] and density oscillations in
two-component cold atomic gases [14,15]. In both those
contexts, very long-lived oscillatory states have been
observed.

In principle one can probe for LOFF behavior, or its
temporal analogue, by comparing the phase relationships
among currents induced by weak-link contacts with a
conventional superfluid at several points, an idea elabo-
rated below and in [16].

T breaking—separation of dynamics and measure-
ment.—The ac Josephson effect gives an example of
time-dependent, and thus time-translation symmetry
breaking, behavior in a system specified by time-
independent conditions. Since its standard realization
involves continual (alternating) current flow across a volt-
age, however, it describes behavior in a dissipative system.
Here I will emphasize, and then build upon, the simple
observation that by making the connection intermittent—
thus regarding it as a probe, rather than an intrinsic part, of
the dynamics—we can make the dissipation arbitrarily
small, while retaining the time dependence. This supplies
us both with an example of a well understood system that
spontaneously breaks time-translation symmetry (*“‘time
crystal”’) and, when generalized, with a technique for
probing possible novel dynamical realizations. I will then
describe another, perhaps more elegant, way to avoid dis-
sipation, using two weak links.

Since they are basic to everything that follows, a quick
recollection of the Josephson phenomena is in order. (For a
simple conceptual introduction see [17]; for a more sophis-
ticated introduction to the state of the art see [18].) We
consider two bulk superconductors connected by a weak
link; for simplicity we suppose that the contact is localized,

so that the spatial variation of the phases 6, 8, of the two
superconductors near the contact, and the vector potential
across the link, can be neglected. Then the basic Josephson
relations are

dé 2eV

@ =7 12
dt h (12)
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where 0 = 6, — 6, is the relative phase, V is the voltage
across the junction, g(8) is a nontrivial 27-periodic func-
tion often approximated as sind, and 7 is a coupling
parameter introduced for later convenience.

Now if V and 7 are nonzero constants then according to
Egs. (12) and (13) we will have the time-dependent current

2eV
i = (%571 + 30) (14)

where 0, is an integration constant. This presents a
manifestly time-dependent physical phenomenon, though
nothing in the specification of the problem broke time
translation symmetry. In that sense it is an example of
spontaneous 7 breaking. The occurrence of an undeter-
mined parameter (“‘soft mode”) &, within a manifold of
solutions fits that interpretation.

On the other hand the movement of charge, in the
presence of a potential difference, will involve dissipation
in a closed system with normal (nonsuperconducting) ele-
ments to close the circuit. If there is no external energy
source of energy to sustain it, V will relax to zero. So if our
ambition is to exhibit highly persistent “ground state”
spontaneous time-translation symmetry, the standard ac
Josephson effect does not quite serve.

That objection, however, is more formal than substan-
tial. We can cleanly separate the conceptually time-
dependent effect, Eq. (12), from its practical manifestation
Eq. (13). Specifically, by making and breaking contact we
can arrange 17 — 7(¢) to vanish except at designated ““mea-
surement’’ times, and to be small even then. In other words,
we can choose to regard the separated superconductors as
the system of interest, and the junction as a measuring
device. Then in the ground state we will have the time-
dependent relation Eq. (14), which entails measurable
physical consequences (and contains 7(¢) only as a multi-
plicative factor), in a system with arbitrarily small dissi-
pation. Practical implementation of a low-dissipation
switch in this context raises several challenging issues, as
discussed in the companion paper [16], where a concrete
design is proposed. The design in [16] employs extended,
as opposed to point, contacts, so more complicated equa-
tions apply.

One can avoid normal components altogether, by clos-
ing the circuit in an annular arrangement incorporating a
second weak link. Ideally, if g(6) = sind, the junctions are
identical, and a magnetic flux of magnitude //4e threads
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the annulus, then the ac Josephson currents at the junctions
will be equal and opposite, due to a phase offset 7, thus
allowing closure of the circuit. If those idealized conditions
are met approximately, then plausibly the system will settle
into a mode of operation wherein some charge accumulates
(dc) at one or both junctions and an appropriate steady (dc)
edge supercurrent supplies corrective flux, so that there is
no net charge accumulation per cycle. In this mode, we
realize dissipation-free yet time-dependent current flow.
(I am neglecting electromagnetic radiation, whose effect
can be minimized in several ways [1]). Distinct but related
frequency locking phenomena in Josephson arrays have
been discussed previously [19].

(Since the voltage difference can in principle relax,
unless special precautions are taken, one may choose not
to regard this breaking as occurring in a ground state, in
which case we could speak of a minimally dissipative 7
symmetry breaking system, as distinct from a strict time
crystal. To me, whether that is a useful distinction seems
somewhat a matter of taste, hinging on to what extent one
is willing to regard the special precautions as intrinsic to
defining “the system.””)

Effective theory.—Let us now adopt a broader perspec-
tive, to consider the possible implications of less conven-
tional dynamics for superconductor 2. The effect of this
will be to modify Eq. (12). To set the stage for general-
izations, let us recall the default assumptions, which lead
to Eq. (12), in a way suggestive for our purposes. The
energy functional of the superconductors contain terms
of the form

2—6A0)2. (15)

Eminimal o (0 - h

This form is consistent with the appropriate gauge
symmetry
! — 28 [ \
0 =6+ ;)\(l), Ay = Ap + A1) (16)
If each superconductor minimizes an energy functional of
this type, then Eq. (12) follows.
On the other hand, suppose that the energy functional of
superconductor 2 is of a less conventional type, suggested

by an extension of the Landau-Ginzburg philosophy, in the
form

3/. 2e 4 k(. 2e 2
E otive & Z<9 - 7140) - 5(9 - 7140) (17)

with xk > 0, while superconductor 1 is conventional. (The
factor 3 is adopted for consistency with [2].) Then we will
have, in place of Eq. (12),
dé 2eV K
L= — = 18
dt h 3 (18)
In principle, this behavior might be probed by use of
Eq. (13), with a small intermittent 7. Note that Eq. (18)

remains nontrivial for V = 0, giving a dissipationless time
crystal. Unfortunately practical identification is compli-
cated by the possibility of nontrivial internal potentials,
which can also contribute to V. The bifurcation of frequen-
cies could be a more robust characteristic.

The condensate in a superconductor supporting both
kinds of unconventional terms, Eq. (17) and (1), would
exhibit traveling waves in ¢, realizing a space-time crystal.
A LOFF superconductor subject to a nonzero potential V
would also serve for that purpose.

Spatial Josephson effect—significance of vector poten-
tial offset.—It is interesting, and falls naturally within our
exploration of time « space analogies, to consider the
possibility of a spatial analog of Eq. (12), in the form

dé  2e
d—Z = Z[Az(z) - Az(l)] (19)

Just as jumps in Ay can be imprinted by parallel capacitor
plates with opposite charge densities, jumps in A, can be
imprinted by parallel current sheets with opposite j,. If we
imagine two superconductors on opposite sides of the
x = 0 plane, where such parallel current sheets are found,
then Eq. (19) will apply. (Of course, one will have to allow
for small windows in the current sheets, where weak links
can form.)

This effect exhibits a direct physical significance for
vector potential offsets, similar in spirit to the Aharonov-
Bohm effect. Indeed, if we draw a loop with short lines
connecting the two superconductors at z = z,, z;, near
x = 0, and joined up by lines inside the superconductors,
the enclosed magnetic flux will be [A,(2) — A, (1)](z; — z,),
and the change in & specified by Eq. (19) reflects that flux
directly. (Integral of F, in the xz plane.) The conventional
ac Josephson effect can be interpreted in a similar way, but
now involving loops in the x¢ plane and enclosed electric
flux. (Integral of F; in the xt plane.) One can, of course,
combine the effects.

Conclusions.—Temporal, and mixed spatiotemporal,
analogues of LOFF ordering can arise in microscopic
models that plausibly might correspond to realizable sys-
tems. It appears to be possible to exhibit time-dependent
phenomena in time independent systems that are asymp-
totically free of dissipation, in the limit of infrequent
measurement, or very nearly so. The preceding discussion
of weak links is a concrete embodiment of the framing of
the issue of observability of time-translation symmetry in
[1] and the related discussions in [3]. I have emphasized
the language of superconductivity, but the central idea, that
weak links can be used to probe unconventional order
parameter dynamics, is more general.

I am grateful to C. Nayak, A. Shapere, Z. Xiong, and
M. Hertzberg for helpful discussions. This work is sup-
ported by the U.S. Department of Energy under Contract
No. DE-FG02-05ER41360.
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Note added.—Recently, an important contribution by
Volovik appeared, [20], containing insightful analysis of
additional examples of time-dependent order parameters in
superfluid systems.
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