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The effect of nonmagnetic impurities on the phase diagram of the classical Heisenberg antiferromagnet

on a triangular lattice is investigated. We present analytical arguments confirmed by numerical calcu-

lations that at zero temperature vacancies stabilize a conical state providing an example of ‘‘order by

quenched disorder’’ effect. Competition between thermal fluctuations and the site disorder leads to a

complicated H–T phase diagram, which is deduced from the classical Monte Carlo simulations for a

representative vacancy concentration. For the XY triangular-lattice antiferromagnet with an in-plane

external field, nonmagnetic impurities stabilize the fanlike spin structure. We also briefly discuss the effect

of quantum fluctuations.
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Introduction.—Spin vacancies produced by substitution
of nonmagnetic ions is a common form of disorder in
magnetic solids. Nonmagnetic impurities are often used
experimentally as a probe of local spin correlations [1,2].
Accordingly, many theoretical works were devoted to
investigation of magnetization patterns and spin textures
around a single impurity in ordered, spin-liquid, and
quantum-critical antiferromagnets [3–14]. Scaling from a
single vacancy to a more realistic situation of small but
finite concentration of impurities is straightforward for
simple collinear antiferromagnets. In the case of frustrated
magnets with a ground-state degeneracy the problem of
collective impurity behavior becomes much more nontri-
vial due to a possible ‘‘order by quenched disorder’’ effect
[15–17].

In this Letter, we consider the triangular-lattice antifer-
romagnets (TAFMs), which attracted a lot of interest in the
past as a paradigmatic example of geometrical frustration
[18–22] and also due to their intrinsic multiferroicity
[23,24]. A single nonmagnetic impurity embedded into
the TAFM was investigated by Wollny et al. [11]. They
found that a fractional magnetic moment collinear with the
‘‘missing’’ spin is formed around a vacancy site. In mag-
netic field, the clean classical TAFM exhibits an ‘‘acciden-
tal’’ degeneracy consisting in an arbitrary orientation of the
spin plane with respect to the field direction [19,20].
Hence, the impurity moment may stabilize the same
coplanar magnetic structures, Figs. 1(a)–1(c), that are
also favored by thermal and quantum fluctuations.

Below, we demonstrate analytically and numerically that
the single-impurity scenario breaks down in the case of the
TAFM already at very small vacancy concentrations. We
find that, in magnetic field, impurities favor the least col-
linear state, i.e., the noncoplanar conical or umbrella spin
structure, Fig. 1(d). The behavior of the diluted TAFM is,
therefore, strongly affected by competition between
quenched and thermal disorder. The phase diagram of

a diluted classical TAFM provides a rare physical example
in which nonmagnetic impurities tune bulk properties of
an ordered antiferromagnet and drastically modify its phase
diagram.
Theory.—We consider the classical Heisenberg antifer-

romagnet on a depleted triangular lattice described by the
spin Hamiltonian

Ĥ ¼ J
X
hiji

pipjSi � Sj �H �X
i

piSi; (1)

with jSij ¼ 1 and pi ¼ 1 or 0 for filled and empty sites,
respectively. The clean model with no depletion, pi � 1,
orders at T ¼ 0 in the 120� three-sublattice magnetic
structure described by the wave vector Q ¼ ð4�=3; 0Þ.
In magnetic field, the classical energy is minimized for

(c)

H
(a) (b)
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FIG. 1 (color online). Ordered magnetic states of a TAFM in
an external field. Spin configurations appearing for the TAFM
without impurities: (a) coplanar Y state, (b) collinear uud state,
and (c) coplanar 2:1 (V) state. Spin configurations in the pres-
ence of nonmagnetic impurities: (d) conical (umbrella) state of
the Heisenberg TAFM, (e) anti-Y state and equivalent (f) fan
state of the XY TAFM.
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spin configurations constrained by the magnetization of
each triangular plaquette

S4 ¼ H=ð3JÞ: (2)

The constraint leaves undetermined the orientation of the
spin plane and sublattice directions inside that plane. This
degeneracy persists up to the saturation field Hs ¼ 9J.

An empty site produces a strong local perturbation in the
120� magnetic structure leading to readjustment of neigh-
boring spins with a characteristic power-law decay with
distance [11]. Therefore, for the sake of analytical analysis,
we resort to a simpler model of weak bond disorder: the
lattice is assumed to be fully filled, whereas the exchange
parameters Jij fluctuate randomly about the mean value J

with h�J2iji ¼ �J2. The bond disorder may develop in

magnets with sizeable magnetoelastic coupling. In our
case, a transformation between the site-disorder model
(1) and the bond-disorder model with Jij ¼ Jpipj can be

constructed by (i) allowing pi 2 ð0; 1Þ, i.e., letting spins on
impurity sites change their length continuously, and
(ii) assuming sufficient density of impurities such that
coupling constants for adjacent bonds fluctuate indepen-
dently. The latter condition is expected to be satisfied for
nimp * 3–5% once a distance between impurities is not too

large. Numerically, we find that the qualitative behavior
obtained for the bond-disorder model remains valid for the
site-dilution model (1) with the vacancy density as low as
nimp � 0:1%.

To treat the effect of small thermal fluctuations T � J
and weak quenched disorder �J � J on equal footing,
we employ the real-space perturbation theory used for
clean frustrated magnets in [25–27]. The starting point is
an arbitrary ground-state spin configuration of the TAFM
in external magnetic field. To take into account small
fluctuations, the Heisenberg Hamiltonian is transformed
into the ‘‘rotating’’ local frame with the zi axis directed
parallel to Si

Ĥ ¼ X
hiji

Jij½Syi Syj þ cos�ijðSziSzj þ Sxi S
x
jÞ

þ sin�ijðSziSxj � Sxi S
z
jÞ� �H �X

i

Si: (3)

Here and below, S�i denote spin components in the local
frame and �ij is an angle between two neighboring spins.

Terms containing only Szi and/or Szj provide the classical

energy and the mean-field fluctuations of spins in a local
magnetic field. By analogy to other frustrated models
[26,27], one can show that a local field for the TAFM is
the same on every site Hloc ¼ 3J irrespective of H � Hs.
Consequently, the local mean-field fluctuations are gov-
erned by the Hamiltonian

Ĥ 0 ¼ �Hloc

X
i

Szi ’
Hloc

2

X
i

½ðSxi Þ2 þ ðSyi Þ2�; (4)

where we expanded Szi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðSxi Þ2 � ðSyi Þ2

q
and use ’ to

indicate that a constant is dropped in the final expression.
In the absence of random disorder (Jij � J), the terms

linear in Sxi sum up to zero for all classical ground states.
Then, the perturbation to Eq. (4) is

V̂1 ¼ J
X
hiji

ðSyi Syj þ Sxi S
x
j cos�ijÞ: (5)

The leading correction to the free energy is given by�F ¼
�hV̂2

1i=2T. Using hðSxi Þ2i ¼ hðSyi Þ2i ¼ T=Hloc derived
from Eq. (4), we obtain

�F ¼ � J2T

2H2
loc

X
hiji

ðcos2�ij þ 1Þ ’ � T

18

X
hiji

ðSi � SjÞ2; (6)

where in the last expression we restore the mean-field
(ground-state) spin directions. Thus, short-wavelength
thermal fluctuations produce an effective biquadratic
exchange. Quantum fluctuations also generate a similar
term [26]. Because of its negative sign, the biquadratic
exchange (6) favors the ‘‘most collinear’’ spin configura-
tions among degenerate classical states. For the TAFM,
this leads to selection of the coplanar configurations,
Figs. 1(a) and 1(c), at low and high fields, respectively,
and to appearance of the 1=3 magnetization plateau with
the collinear up-up-down (uud) spin structure, Fig. 1(b).
We now set T ¼ 0 and consider the effect of quenched

disorder, which locally violates the perfect geometrical
frustration. In this case, the linear terms provide the main
perturbation to the classical energy

V̂2 ¼
X
hiji

�Jij sin�ijðSxj � Sxi Þ: (7)

Minimization of Ĥ 0 þ V̂2 with respect to Sxi under the
assumption that bonds fluctuate independently yields

�E ¼ � �J2

2Hloc

X
i;j

sin2�ij ’ �J2

3J

X
hiji

ðSi � SjÞ2: (8)

The energy correction generated by the bond disorder
has the same functional form as (6) but with the opposite
sign. Therefore, the configurational disorder favors the
‘‘least collinear’’ states in the ensemble of degenerate
classical ground sates. Selection of orthogonal or ‘‘anticol-
linear’’ ground states was previously known in the context
of the diluted J1–J2 square-lattice antiferromagnet [12,16],
yet the tendency determined by (8) is rather general, see
also Refs. [28,29] with similar conclusions.
In the case of the Heisenberg TAFM, in an external field

the least collinear state corresponds to the conical spin
structure, Fig. 1(d). Thus, the two types of disorder, thermal
and quenched, compete with each other producing a rich
H–T phase diagram. Note that Eqs. (6) and (8) are only
approximate and constitute the first terms in the 1=z expan-
sion, z being the number of the nearest neighbors [29].
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Still, as comparison with the numerics shows, the effective
biquadratic exchange is able to capture the principal quali-
tative tendencies for the TAFM.

Ground state selection.—To extend the qualitative ana-
lytical result obtained for the weak bond disorder to the
case of random vacancies, we performed numerical mini-
mization of the classical energy (1). The minimization is
carried out for periodic L	 L clusters with fixed concen-
tration of nonmagnetic impurities nimp ¼ 0:1%–5% and

linear sizes up to L ¼ 150. One starts with a random
spin configuration and solves iteratively the local mini-

mum condition SðkÞ
i k hðkÞ

i , where the local field is hðkÞ
i ¼

H� J
P

jpjS
ðk�1Þ
j . Once converged the procedure is

repeated with up to 103 random initial configurations and
the global minimum is selected. Physical quantities are
then averaged over 100 impurity replicas.

Ground-state configurations of the TAFM in magnetic
field are characterized by the antiferromagnetic order pa-
rameter

MQ ¼ 1

N

X
i

Sie
�iQri ; (9)

with N being the number of filled sites. In particular,
the conical state is unambiguously distinguished from the

coplanar configurations by a finite M?
Q ¼ ðjMx

Qj2 þ
jMy

Qj2Þ1=2 and jMz
Qj ¼ 0.

Numerical results for transverse and longitudinal com-
ponents of the AFM order parameter at H=J ¼ 3 are
shown in Fig. 2. The conical state remains stable for all
studied impurity concentrations including the smallest one
nimp ¼ 0:1%. The lack of appreciable finite-size effects in

M?
Q indicates the absence of a spin-glass phase and the

development of the true long-range order in transverse
components. A similar behavior is found for all 0<H <
Hs albeit with more iteration steps required for H ! 0.

Hence, the numerical results for the diluted TAFM fully
corroborate the analytical findings for the bond-disorder
model. The vacancy moment effect [11,13] averages to
zero due to equal occupation of magnetic sublattices by
impurities and the finite-field behavior is determined by
configurational fluctuations which are correctly captured
by the bond-disorder model.
Phase diagram.—We have performed the classical

Monte Carlo simulations of the diluted TAFM in a wide
range of temperatures and magnetic fields using the hybrid
algorithm, which combines the Metropolis step with a few
over-relaxation moves, see [30,31] for further details.
Physical quantities and associated error bars were esti-
mated from averaging over 100 impurity replicas. Phase
transition boundaries were determined by the standard
finite-size scaling analysis of the the fourth-order Binder
cumulants for the AFM order parameter (9) and the asso-
ciated spin chirality, as well as from the behavior of the
spin stiffness and the specific heat on clusters with linear
sizes up to L ¼ 150.
The magnetic phase diagram of the Heisenberg TAFM

with 5% of vacancies is shown in Fig. 3. The main new
feature in comparison with the diagram of the pure model
[19,31,32] is the emergence of the conical state at low
temperatures for all H � Hs. At high enough tempera-
tures, the increased thermal fluctuations overcome the
quenched disorder and magnetic phases of the pure
TAFM reappear again, though the Y phase remains absent
for nimp ¼ 5%. The phase transition boundaries are drawn

in Fig. 3 down to H=J � 1. In lower magnetic fields, the
finite-size effects become stronger and require simulations
of significantly larger clusters than those studied in our
work. Therefore, we cannot exclude reappearance of the Y
phase at very low fields. Instead, we show evolution of the
phase boundaries with the vacancy concentration at fixed

FIG. 2 (color online). Zero-temperature transverse jM?
Q j

and longitudinal jMz
Qj antiferromagnetic order parameters at

H=J ¼ 3 for clusters with different concentration of vacancies
nimp and different linear size L.

FIG. 3 (color online). Classical Monte Carlo phase diagram of
the Heisenberg TAFM with 5% of nonmagnetic impurities. Solid
lines via data points are guides for the eye. The inset shows the
concentration evolution of ordered phases for H=J ¼ 1:3, which
is indicated by the dashed line on the main panel.
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H ¼ 1:3J in the inset of Fig. 3. The Y phase is present in
this field for small nimp and disappears at nimp � 4:5%.

The effect of impurities on the critical behavior of
the TAFM can be assessed using the Harris criterion
[33], which states that the disorder becomes relevant
for transitions with � ¼ 2� d� > 0. In particular, the
Berezinskii-Kostelitz-Thouless (BKT) transition formally
has � ¼ 1 and remains unaffected by vacancies as was
confirmed numerically in [34]. The second-order transition
into the uud state, which belongs to the universality class
of the 2D three-state Potts model, has � ¼ 1=3 and is,
therefore, driven by impurities to a new random fixed
point, see [35,36] and references therein. Nevertheless,
the spin correlation exponent � stays very close to the
clean value � ¼ 4=15 [35] and we also found virtually
no difference with the pure case for the critical behavior of
the order parameter at this transition in our Monte Carlo
simulations.

In the high-field region 5J & H <Hs the direct transi-
tion between paramagnetic and conical states is accompa-
nied by breaking of the Z2 
Oð2Þ symmetry, where Z2

describes the chirality ordering. The statistical errors in
simulations brought by the impurities are too large to
resolve a presumably tiny splitting of TBKT and Tchir as
well as an effect of the disorder on the Ising-like chiral
transition. Finally, transitions between coplanar states and
the conical phase are expected to be of the first order on
symmetry grounds. Indeed, there is a signature of the first-
order transition for 2J & H < 3J from the scaling of the
specific heat anomaly. At higher and lower fields the
diluted TAFM shows fingerprints of a continuous transition
between conical and coplanar states, which may also
signify presence of an intermediate phase in a narrow
temperature interval.

XY triangular antiferromagnet.—Let us now briefly dis-
cuss the effect of nonmagnetic impurities in the easy-plane
TAFM—a model relevant to a number of real materials.
Some of them exhibit the 1=3 magnetization plateau for
fields applied parallel to the easy plane [24,37], which is a
clear sign of geometrical magnetic frustration. The ordered
states of the XY TAFM in the presence of an in-plane
magnetic field were investigated by Lee et al. [18].
Thermal fluctuations lift the ground-state degeneracy in
favor of the same sequence of phases in magnetic field as
for the Heisenberg model, see Figs. 1(a)–1(c). Our deriva-
tion of an effective biquadratic exchange for the weak bond
disorder remains intact for the XY spins. Hence, the only
difference with the isotropic case is that the conical state,
Fig. 1(d), as well as other noncoplanar configurations are
now forbidden. Therefore, the biquadratic exchange (8)
lifts the degeneracy between the coplanar structures only.
An elementary analysis shows that the lowest energy state
favored by a positive biquadratic exchange corresponds to
the ‘‘anti-Y’’ spin configuration shown in Fig. 1(e). In
stronger magnetic fields the two canted spins tilt further

towards the field direction continuously transforming the
anti-Y state into the ‘‘fan’’ spin structure, Fig. 1(f).
We have complemented analytical consideration with

numerical search for the lowest-energy magnetic structures
using the same technique as for the isotropic model.
Numerical results, which will be reported elsewhere [38],
are fully consistent with the presence of the fan (anti-Y)
state in the whole range of magnetic fields. Interestingly, a
new high-field state interpreted as a fan structure was
recently observed in the easy-plane spin-1=2 TAFM
Ba3CoSb2O9 [37]. Though the full theoretical explanation
of the new phase should include quantum effects, our
analysis of the classical model suggests that nonmagnetic
impurities may play a key role in its appearance.
Discussion.—Nonmagnetic impurities modify the

behavior of the classical TAFM in an external magnetic
field. The effect of static disorder can be qualitatively
described by a positive biquadratic exchange, which com-
petes with a similar effective interaction of the opposite
sign generated by thermal and quantum fluctuations. At
zero temperature, vacancies stabilize the conical state for
the Heisenberg TAFM, whereas for the XY model with an
in-plane field they favor the fanlike spin structure. A
similar competition between the quenched disorder and
thermal effects must also be present in other geometrically
frustrated antiferromagnets.
Beyond the classical model, quantum fluctuations will

compete with the effect of dilution even at T ¼ 0. For a
given spin value S, there is a critical concentration of
vacancies ncimp � 1=S needed to overcome the quantum

selection of most collinear states. Comparing the harmonic
spin-wave energies of the uud and conical states [20] with
the classical energy gain of the conical state obtained from
the numerical minimization, we find that the 1=3 magne-
tization plateau of the Heisenberg TAFM is stable up to
ncimp � 4% for S ¼ 5=2 [38]. This estimate for ncimp

becomes even lower once quantum effects are further
suppressed by weak magnetic anisotropy. Systematic
experimental studies of frustrated magnets doped with
nonmagnetic impurities may, therefore, bring new fasci-
nating physics. Apart from the fundamental interest, this
can open additional possibilities in controlling electrical
and magnetic polarizations in triangular multiferroics.
We acknowledge helpful discussions with A. L.

Chernyshev and M. Vojta.
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