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Motivated by recent experiments on superconducting circuits consisting of a dc-voltage-biased

Josephson junction in series with a resonator, quantum properties of these devices far from equilibrium

are studied. This includes a crossover from a domain of incoherent to a domain of coherent Cooper pair

tunneling, where the circuit realizes a driven nonlinear oscillator. Equivalently, weak photon-charge

coupling turns into strong correlations captured by a single degree of freedom. Radiated photons offer a

new tool to monitor charge flow and current noise gives access to nonlinear dynamics, which allows us to

analyze quantum-classical boundaries.
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Introduction.—The essence of quantum mechanics lies
in the existence of pairs of conjugated, noncommuting
variables linked by uncertainty relations. For a supercon-
ducting Josephson junction (JJ) the nonlinear dynamics of
the number of Cooper pairs (CPs) transferred across the
junction and the phase difference of the superconducting
condensates are linked in that manner [1,2]. In a dc-biased
circuit, the electromagnetic properties of the equilibrium
environment and the coupling of the JJ determine, whether
a ‘‘classical’’ ac Josephson current with a well-defined
phase, an incoherent tunneling of single CPs due to dyna-
mical Coulomb blockade (DCB), or the full quantum
dynamic regime, where neither phase nor charge behaves
like a classical variable, occurs [3].

In the last years, this setup has been extended by com-
bining JJ devices with superconducting resonators, the
electromagnetic modes of which act as dynamical degrees
of freedom. This has led to an unprecedented control of
quantum properties such as the creation of catlike states [4]
and the observation as well as theoretical description of
nonlinear dynamics [5–11]. While in these circuits no net
charge flows through the JJ, dc-voltage-biased setups,
implemented very recently in [12–15], offer new possibil-
ities to study nonlinear quantum properties in a tunable
photon-charge system far from equilibrium [16–18].

In this Letter we consider a circuit, realized experimen-
tally in [13], where a JJ, biased by a voltage V, is placed in
series to a resonator as displayed in Fig. 1. At low tem-
peratures and voltages below the superconducting gap, the
excess energy 2eV of tunneling CPs is completely trans-
formed into photons exciting the resonator. There, photon
leakage leads to radiation that can be detected. Two limit-
ing scenarios are then possible: Either CP tunneling is
slow compared to photon relaxation so that between sub-
sequent tunneling events the cavity returns to its ground
state, or charge transfer is fast so that photons accumulate
and undergo backaction on the JJ giving rise to strong
charge-photon correlations. The first regime, known as

DCB, has been analyzed in [13] and corresponds to an
incoherent CP flow. However, what happens in the second
regime and how the crossover between the two domains
occurs, is not known yet. The goal of this work is to fill this
gap and to provide detailed predictions for future experi-
ments. As we will show, in the second regime, the JJ
behaves according to the classical Josephson relations,
based on coherent CP tunneling, and the circuit realizes a
driven nonlinear oscillator governed by a single degree of
freedom. By tuning its parameters, one may continuously
switch between the two domains and thus access diffe-
rent dynamical properties. In a broader context, these
results contribute to current efforts to achieve a deeper

FIG. 1 (color online). Parameter space of a circuit consisting
of a resonator with mode frequency !0 and damping � in series
with a voltage-biased JJ (inset) with dimensionless coupling
�¼EJ=ðm!0�Þ and the scale for DCB � ¼ EC=@!0: Classical
behavior is seen in the green range; below (above) the red line
charge flow through the JJ occurs incoherently (coherently) with
the resonator being at T ¼ 0 basically empty (excited); the black
line separates the domains of linear (below) and nonlinear
(above) dynamics. Horizontal lines (blue) refer to the parameter
values of Fig. 2.
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understanding of quantum-classical boundaries in non-
equilibrium systems including superconducting (see [19]
for a complementary setup to the one studied here), micro-
mechanical [20], and cold-atom setups [21].

Model.—The Hamiltonian of the circuit follows from the
two subunits, the resonator part and the JJ part, where in
the regime we are interested in only a single mode of the
resonator impedance Zð!Þ is relevant. One thus has ~H0¼
ðq2=2CÞþð@=2eÞ2ð1=2LÞ�2�EJ cosð�Þ�2eðV�VresÞN
describing a harmonic oscillator with mass m ¼ ð@=2eÞ2C
and frequency !0 ¼ 1=

ffiffiffiffiffiffiffi
LC

p
in series to a JJ with phase �

which is subject to a bias voltage V. Here, the two sets of
conjugate variables obey ½q;�� ¼ �2ie and ½N;�� ¼ �i,
where in contrast to the charge operator q, the number
operator N has discrete eigenvalues, counting the number
of CPs that have transferred the JJ. The effective voltage
at the JJ also contains the voltage drop at the resonator

2eVres ¼ �@ _�, thus coupling the JJ and resonator
dynamically.

Now, a straightforward calculation shows [22] that for
weak detuning �=!0 ¼ ð!0 �!JÞ=!0 � 1 with !J ¼
2eV=@, in the rotating frame the Hamiltonian ~H0 takes
the form

H0 ¼ @�ayaþ i
E�
J

2
: ðayei� � ae�i�Þ J1ð2

ffiffiffiffiffiffi
�n

p Þ
ffiffiffi
n

p : ; (1)

with standard photon annihilation(creation) operators of
the resonator and e�i� invoking forward(backward) CP
tunneling. Here, : : denotes normal ordering and the
Bessel function J1 of the first kind contains the photon
number operator n ¼ aya. The dimensionless parameter

� ¼ EC=@!0 � @=ð2m!0Þ
represents the scale for charge quantization through EC ¼
2e2=C while E�

J ¼ EJe
��=2 is a renormalized Josephson

energy [3].
According to the experimental setting [13], the electro-

magnetic environment of the circuit consists of high-
frequency modes acting as a heat bath and low-frequency
voltage noise. The former leads to photon leakage from
the resonator while the latter one can be seen as a fluctuat-
ing component of the bias voltage which thus couples to
the charge N. At low temperatures, the dynamics of the
reduced density operator of the JJ-resonator compound is
then captured by a master equation

_� ¼ � i

@
½H0 ; �� þ �

2
L½a; �� þ �J

2
L½N; �� ; (2)

where dissipators L½x; �� model the impact of the respec-
tive environments. The rate � determines the photon life-
time in the cavity via its Q factor, i.e., Q ¼ !0=�, and the
rate �J follows from the noise power of low-frequency
voltage fluctuations; see [22]. This decreases with decreas-
ing temperature so that �J � �. Hence, we start by putting
�J ¼ 0 and discuss further details below.

The dynamics in (2) displays a complex interplay
between charge transfer and photon emission or absorption.
Restricting ourselves to the stationary state, this is particu-
larly seen in the resonator population, which, according to
Eq. (2), reads

hnist ¼ �e��=2

4�

�
: ðayei� þ ae�i�Þ J1ð2

ffiffiffiffiffiffi
�n

p Þ
ffiffiffi
n

p :

�

st
: (3)

Here, we introduced the coupling parameter

� ¼ EJ=ðm!0�Þ;
which, as shown below, determines together with the quan-
tum parameter � the dynamics of the circuit. The current
through the JJ, i.e., hIJist � 2eh _Nist, is obtained accordingly
from (2) and turns out as hIJist ¼ 2e�hnist. This reflects
energy conservation between charge flow and photon absor-
ption. Photon radiation in the steady state is, of course,
also fixed by hnist. Correlations of charges and photons are
captured by hae�i�ist ¼ Ca;��=ð�� 2i�Þ with

Ca;� ¼ �e��=2

2
ffiffiffiffi
�

p
�
: J0ð2

ffiffiffiffiffiffi
�n

p Þ þ a

ay
J2ð2

ffiffiffiffiffiffi
�n

p Þe�2i�:

�

st
:

(4)

While in general explicit results must be obtained numeri-
cally, it is intriguing to first consider how limiting cases are
recovered and what are their precise ranges of validity.
Incoherent charge transfer.—In the weak coupling

regime � � 1 (cf. Fig. 1), the Bessel functions can be
linearized by assuming self-consistently �hnist � 1. One
then arrives with (1) at the Hamiltonian for DCB [23], i.e.,
H0;DCB ¼ @�nþ ði=2Þ ffiffiffiffi

�
p

E�
Jðayei� � ae�i�Þ. Likewise,

we find for the photon occupation (3) with Ca;� �
�e��=2=ð2 ffiffiffiffi

�
p Þ in leading order

hnilinst ¼ �2e��

4�

�2

�2 þ 4�2
; (5)

which in turn verifies the assumption. The current hIJilinst ¼
2e�hnilinst is identical to the one derived within the golden
rule treatment of DCB [PðEÞ theory] [13,23] describing
incoherent CP transport across the JJ. Subsequent tunnel-
ing processes are thus statistically independent and, in the
low-temperature range, one may express the current also
in terms of the forward tunneling rate �f as hIJist ¼ 2e�f

with �f ¼ �hnilinst . This implies that between subsequent

tunneling events the resonator returns to its ground state (at
T ¼ 0) and there is no backaction onto the JJ. The condi-
tion for this scenario is that photon relaxation occurs
sufficiently fast compared to CP tunneling, i.e., �f � � )
hnilinst � 1. This relation defines the crossover between
incoherent and coherent charge flow (red line in Fig. 1):
For fixed �, the coherent domain is approached by increas-
ing � and thus by either increasing the Josephson energy or
the photon lifetime in the cavity.
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We note that formally the linearization condition used
in (5) �hnist � 1 is not identical to the condition for the
incoherent-coherent transition hnist � 1, (cf. Fig. 1).
Physically, for small � and � the circuit may thus display
linear dynamics even in the coherent regime.

Classical regime.—We now consider the situation where
the photon occupation and in turn the JJ current are large,
while the quantum parameter � � 1, such that �hnist ¼
const. Charging effects thus do not play any role and
we may put ei� ! 1 and replace operators by 2

ffiffiffiffi
�

p
a !

Z expði’Þ with real-valued amplitude Z and phase ’.
Consequently, at resonance (� ¼ 0) the rotating frame
Hamiltonian (1) reduces to

H0;cl ¼ EJJ1ðZÞ sinð’Þ: (6)

The same result is also obtained directly from a classical
description of the circuit in Fig. 1: The Kirchhoff rules
impose V ¼ VJ þ Vres, so that the voltage VJ across the JJ

is slaved to the dynamics of the resonator phase Vres ¼
�ð@=2eÞ _�. Accordingly, the classical Josephson energy
reads �EJ cosð�þ!JtÞ and acts as a nonlinear drive on
the resonator. Near resonance !J � !0, the ansatz �ðtÞ ¼
Z cosð!Jtþ ’Þ for the stationary orbit then leads in the
rotating frame to (6). We emphasize that in contrast to most
driven nonlinear oscillators, recently realized also with
superconducting circuits (see, e.g., [10]), here, the nonline-
arity is part of the drive and not part of a static potential.
The classical treatment is based on the coherent flow of
CPs and the circuit is described by the single degree of
freedom � of a driven nonlinear system. Amplitudes and
phases of stationary orbits are determined by the static
parts of the classical equations of motions [22], i.e.,

Z2 ¼ 2�J1ðZÞ cosð’Þ; 0 ¼ sinð’ÞdJ1ðZÞ=dZ: (7)

For � � 1, this set of equations has only one solution,
namely, the orbit Z0 � �, ’0 ¼ 0 obtained by linearizing
J1ðZÞ. With increasing �, the amplitude grows, nonlineari-
ties become relevant, and at � ¼ �c � 3 a first bifurcation
occurs. There, a new class of orbits appears with constant
amplitude Z1 � 1:8, given by ½dJ1ðZÞ=dZ�ðZ1Þ ¼ 0, and
growing phase ’1ð� > �cÞ> 0. The critical coupling �c

follows from Z0ð�cÞ ¼ Z1.
Full quantum dynamics.—The master equation, Eq. (2),

describes the full dynamics of the JJ-resonator system. The
density � is conveniently found numerically in a base of
product states that are eigenstates of the number operators
n and N. However, in this basis �ðtÞ does not reach a
stationary state due to a finite current hIJist � TrfN _�ðtÞg.
This problem is circumvented by introducing auxiliary
densities �� ¼ TrJfei���g with a partial trace over the JJ

degrees of freedom and � being an integer. Coherences
between differing numbers of transferred Cooper pairs are
captured for � � 0. This way, one arrives at a hierarchy of
coupled equations of motions for the �� which is solved

by proper truncation. Based on the quantum regression

theorem [24], all relevant observables of cavity and JJ
are then evaluated.
Results.—We are now able to investigate how the cross-

over from the limiting regimes to the full nonlinear quan-
tum case in Fig. 1 is encoded in various observables which
are accessible experimentally.
The fact that the resonator occupation determines in the

classical limit the amplitude of the orbit via @!0hnist !
m!2

0Z
2=2, suggests to formally define Zq ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
�hnist

p
. We

may then study how for fixed � this ‘‘quantum amplitude’’
approaches the classical domain for small � and the DCB
domain for large �; see Fig. 2. In the case of � � 1, the
DCB result (5) provides a fairly accurate description
over the full range where quantum effects only appear in

the renormalized parameter �e��=2. In contrast, for larger
couplings, nonlinearities are relevant in the classical
regime (smaller �) as well as in the nonperturbative quan-
tum domain where CP transfer is coherent (intermediate
values of �). These results verify the domains in parameter
space depicted in Fig. 1. Moreover, we recover from the
simulations the experimental observations of Ref. [13]
obtained in the DCB regime (see Fig. 3) [25]. Since hIJist /
hnist and !J varies with the voltage V, the occupation hnist
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FIG. 2 (color online). Quantum amplitude Zq ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
�hnist

p
vs �

for different couplings �. Green (red) lines show the classical
(DCB), black lines the full nonlinear quantum results.
Corresponding ranges of validity are indicated (cf. Fig. 1).
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FIG. 3 (color online). Photon occupation hnist (black) vs cou-
pling � (left) and detuning � (right). Exact results (black) are
shown together with the DCB result (5) (red). Left: � ¼ 0:5
(solid line), � ¼ 2 (dashed line). Right: � ¼ 1:5 (dashed line),
� ¼ 3 (solid line). Inset: Green (blue) lines reveal (anti)bunching
for � ¼ 0:5 (� ¼ 4:7) visible in gð2Þð�Þ for � � 1.
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as a function of the detuning (cf. Fig. 3 right) provides also
the IV curve of the JJ.

Experimentally of particular relevance are photon corre-

lations such as gð1Þð�Þ ¼ hayðtÞaðtþ �Þi=hayai. Its Fourier
transform provides for long times t the spectral distribution
of the photon radiation. We find that its width sensitively
depends on the low-frequency voltage fluctuations which
have been neglected so far. Upon comparing experimental
data with numerical predictions for �J � 0, one gains
�J=� � 0:04 � 1, verifying that they are relevant only
for those quantities which are broadened solely by �J.

The next order correlation gð2Þð�Þ ¼ hayðtÞayðtþ �Þaðtþ
�ÞaðtÞi=hayai2 carries information about correlations bet-
ween emitted photons and thus indicates (anti-)bunching;
see Fig. 3. Even though charge flow is incoherent in the

DCB regime, gð2Þð�Þ reveals non-Poissonian photon corre-

lations gð2Þð�Þ � 1. For weak driving � � 1, gð2Þð0Þ is
related to the probability of finding the resonator excited
by a second tunneling event, before it relaxes to its ground

state, with the result gð2Þð0Þ ¼ ð1� �=2Þ2.
The circuit considered here provides not only a new tool

to analyze charge flow by detecting emitted photons, but
also to monitor nonlinear dynamics by detecting current
correlations as, e.g., the Fano factor FJ ¼ SIJIJ=ð4eIJÞ of
the JJ-current-current noise SIJIJ ; see Fig. 4. As expected,

we find FJ ¼ 1 in the incoherent, single-CP transport
regime (shot noise) for weak coupling. The onset of a
coherent charge flow through the JJ results in a substantial
drop of FJ due to a reduction of shot noise. However, most
strikingly the Fano factor approaches a minimum followed
by a pronounced peak exactly at those values for � where
according to (7) new classical orbits emerge. As this class
of new orbits is a mere consequence of the nonlinearity and
exists even in absence of dissipation (formally � ! 1),
the resonator gains on average (over one driving period) no
net energy from the driving source. Physically, this means
that a new channel for a correlated two-CP transfer opens:
The energy quantum 2eV ¼ @!0 deposited in the cavity
by a forward CP transfer is used to promote a backward

transfer leading in turn to no net current. Around the
classical bifurcation point the competition between two
sets of classical orbits is then observable as a substantial
increase in the charge noise. For larger �, the bifurcation

point is shifted according to � ! �e��=2 and features are
smeared out by quantum fluctuations (Fig. 4, left). These
findings open fascinating avenues to study signatures of
classical bifurcations in the deep quantum regime
experimentally.
We conclude this analysis by highlighting that rich

physics is also present beyond the fundamental resonance
!J � !0. For this purpose, one relaxes the rotating-wave
approximation in the numerical approach described above
which then gives access to further resonances in the reso-
nator occupation (respectively, the JJ current) when the
applied dc voltage is varied [26]. As illustrated in Fig. 5,
resonances occur indeed for !J ¼ p!0, p 2 Z. In a gen-
eralization of (5), within the DCB regime one shows that

the pth resonance scales as e���jpj�2=jpj!. As displayed
for p ¼ 2 in Fig. 5, the generation of p photons by a single
CP leads to strong correlations in the photon output and
thus to a strongly non-Poissonian resonator occupation;
see Fig. 5. Accordingly, for weak driving the correlation

gð2Þð0Þ ¼ 1=ð2hnistÞ 	 1 diverges (cf. Ref. [17]).
To summarize, we have analyzed the quantum dynamics

of a superconducting circuit consisting of a voltage-biased
JJ in series with a resonator in strong nonequilibrium.
Analytical findings and numerical simulations provide
detailed information about the crossover from the regime
of sequential tunneling with weak photon-charge correla-
tions to the one where the circuit behaves as a driven
nonlinear oscillator with a single degree of freedom. This
also implies a quantum-classical transition. Charge flow is
detectable via photon radiation and current-current corre-
lations display quantum signatures of classical bifurcations
in the nonlinear regime. Multiphoton resonances reveal
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complex charge-photon interaction including photon
bunching and are thus of great interest for future theoretical
and experimental studies.

The authors thank A. Armour, M. Blencowe, M.
Hofheinz, F. Portier, and A. Rimberg for valuable discus-
sions. J. A., B. K., and V.G. would like to thank the kind
hospitality of the Department of Physics and Astronomy,
Dartmouth College, Hanover, NH (J. A., B. K.), and the
O. V. Lounasmaa Laboratory, Aalto University, Helsinki,
Finland (V.G.). Financial support was provided by
Deutsche Forschungsgemeinschaft through AN336/6-1
and SFB/TRR21. V.G. also acknowledges gratefully the
German Academic Exchange Service (DAAD) and the
European Community’s Seventh Framework Programme
(FP7/2007-2013) under Grant Agreement No. 228464
(MICROKELVIN). S. R. acknowledges the support of the
Zeiss Foundation. V. Gramich and B. Kubala contributed
equally to this work.

*vera.gramich@uni-ulm.de
[1] A. Barone and G. Paterno, Physics and Applications of the

Josephson Effect (John Wiley & Sons, New York, 1982).
[2] K. Likharev, Dynamics of Josephson Junctions and

Circuits (Gordon and Breach, New York, 1986).
[3] H. Grabert, G.-L. Ingold, and B. Paul, Europhys. Lett. 44,

360 (1998).
[4] M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E.

Lucero, M. Neeley, A. D. O’Connell, D. Sank, J. Wenner,
J.M. Martinis, and A.N. Cleland, Nature (London) 459,
546 (2009).

[5] I. Siddiqi, R. Vijay, F. Pierre, C.M. Wilson, L. Frunzio,
M. Metcalfe, C. Rigetti, R. J. Schoelkopf, M.H. Devoret,
D. Vion, and D. Esteve, Phys. Rev. Lett. 94, 027005
(2005).

[6] V. Peano and M. Thorwart, Chem. Phys. 322, 135
(2006).

[7] M. Marthaler and M. I. Dykman, Phys. Rev. A 76, 010102
(R) (2007).

[8] F. R. Ong, M. Boissonneault, F. Mallet, A. Palacios-Laloy,
A. Dewes, A. C. Doherty, A. Blais, P. Bertet, D. Vion, and
D. Esteve, Phys. Rev. Lett. 106, 167002 (2011).

[9] C.M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen,
R. Johansson, T. Duty, F. Nori, and P. Delsing, Nature
(London) 479, 376 (2011).

[10] Fluctuating Nonlinear Oscillators, edited by M. I.
Dykman (Oxford University Press, Oxford, 2012).

[11] F. R. Ong, M. Boissonneault, F. Mallet, A. C. Doherty, A.
Blais, D. Vion, D. Esteve, and P. Bertet, Phys. Rev. Lett.
110, 047001 (2013).

[12] J. Basset, H. Bouchiat, and R. Deblock, Phys. Rev. Lett.
105, 166801 (2010).

[13] M. Hofheinz, F. Portier, Q. Baudouin, P. Joyez, D. Vion,
P. Bertet, P. Roche, and D. Esteve, Phys. Rev. Lett. 106,
217005 (2011).

[14] F. Chen, A. J. Sirois, R.W. Simmonds, and A. J. Rimberg,
Appl. Phys. Lett. 98, 132509 (2011).

[15] Y. A. Pashkin, H. Im, J. Leppäkangas, T. F. Li, O. Astafiev,
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