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We analyze the quantum dynamics of a superconducting cavity coupled to a voltage-biased Josephson

junction. The cavity is strongly excited at resonances where the voltage energy lost by a Cooper pair

traversing the circuit is a multiple of the cavity photon energy. We find that the resonances are

accompanied by substantial squeezing of the quantum fluctuations of the cavity over a broad range of

parameters and are able to identify regimes where the fluctuations in the system take on universal values.
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Recent progress in integrating superconducting resona-
tors with Josephson junction devices [1], and in measuring
quantum states in the microwave regime [2], has opened up
many new ways of using such devices to study the quantum
dynamics of nonlinear oscillators [3–7]. Significant atten-
tion has been devoted to the idea of using a few-level
Josephson ‘‘artificial atom’’ to excite laserlike behavior
in a superconducting resonator [5,8–12] and above thresh-
old behavior has been observed in one such system [5].
An alternative way of exciting cavity modes which requires
neither discrete levels nor an externally applied ac signal,
is to harness the Josephson oscillations generated by a
dc voltage. Though long studied [13–16], such systems are
attracting renewed interest given the potential of current
experiments to probe the quantum regime in a carefully
controlled way.

In the last few years the properties of the photons emitted
into a cavity mode by small voltage-biased Josephson
junctions have been investigated both experimentally
[17,18] and theoretically [19,20], within the regime where
the cavity is close to equilibrium. However, a very recent
experiment used an architecture in which a voltage-biased
Cooper-pair transistor [12] is embedded within a super-
conducting microwave cavity [21] to achieve a far-from-
equilibrium state with a large photon population [22].

In this Letter we investigate theoretically the quantum
dynamics of a model circuit consisting of a voltage-biased
Josephson junction and a superconducting cavity. We focus
on the regime where a single cavity mode is strongly
excited, deriving a Hamiltonian to describe the behavior
close to the family of resonances which occur when the
voltage energy lost by Cooper pairs traversing the circuit is
an integer multiple of the mode frequency. The resulting
Hamiltonian describes a nonlinear oscillator which is quite
distinct from the Duffing oscillator and other commonly
studied nonlinear systems [7]. The system exhibits quad-
rature and amplitude squeezing over a broad range of
parameters. Surprisingly, there are regimes where the fluc-
tuations take on values that are universal in the sense that
they are independent of the system’s parameters. We note

that a study contemporary with ours [23] investigated a
similar system quite independently, but in a very different
regime.
Model system.—The system we consider is shown sche-

matically in Fig. 1(a); it consists of two Josephson junc-
tions in a SQUID geometry [16] mounted on a wire linking
the central conductor and ground plane of a superconduct-
ing cavity. The SQUID acts as a single effective junction
whose Josephson energy can be tuned by applying a suit-
able flux [24]. The dc bias is applied via a line which joins
the center conductor at the midpoint of the cavity. This
geometry (described in detail elsewhere [21,22,25,26])
allows the bias to be applied without affecting the Q factor
of cavity modes with voltage nodes at the midpoint where
the bias line joins the center conductor [Fig. 1(a)]. The
high-Q factors of the modes in the system we consider are

FIG. 1 (color online). (a) Schematic diagram and (b) effective
circuit model of the system. It consists of a SQUID containing
two Josephson junctions (JJs) in series with a microwave cavity,
modeled as a set of LC oscillators, across which a voltage V is
applied. The SQUID acts as a single effective junction whose
Josephson energy can be tuned by application of a flux, �.
Coupling of the cavity to a transmission line [shown in (a)] leads
to dissipation. High-Q modes have voltage nodes at the point
where the bias voltage line joins the center conductor, one such
mode shape is indicated in (a). Definitions of the effective circuit
parameters are given in [26].
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crucial: they allow access to the far-from-equilibrium
regime where the photon population is large.

A simple effective circuit model for the system is
shown in Fig. 1(b), with the cavity modeled as a set of
LC oscillators [26]. The cavity is subject to dissipation
arising from couplings between its modes and those of a
transmission line.

The Hamiltonian of the effective circuit shown in
Fig. 1(b) takes the time-dependent form

H ¼ X
i

@!ia
y
i ai � EJ cos

�
!dtþ

X
i

�iðai þ ayi Þ
�
; (1)

where ai is the lowering operator for the ith oscillator
with frequency !i¼1=

ffiffiffiffiffiffiffiffiffiffi
LiCi

p
, EJ is the effective

Josephson junction energy and !d ¼ 2eV=@ is the
frequency associated with the bias voltage V [26]. The
zero-point displacement of each of the oscillators is given

by �i ¼ ð2e2 ffiffiffiffiffiffiffiffiffiffiffiffiffi
Li=Ci

p
=@Þ1=2.

Resonances occur when the voltage energy lost by an
integer number of Cooper pairs traversing the circuit
matches the energy required to create photons in one or
more of the cavity modes. Here we will explore resonances
of the fundamental cavity mode (with frequency!0) which
occur when !d ’ p!0, with p an integer, and neglect the
higher modes in the Hamiltonian (1).

We analyze the system by moving to a rotating frame

defined by UðtÞ ¼ eið!d=pÞayat (dropping the subscript
labeling the mode) and derive a time-independent effective
Hamiltonian by making a rotating wave approximation
(RWA). The RWA should describe the system faithfully

when it is very close to resonance,!0�!d=p¼�ðpÞ�!0,
!d=p, provided the couplings�0 and EJ are not too strong.
We proceed by expressing the sinusoidal term as expo-
nentials and the Baker-Hausdorff formula [27] is used
to rewrite the exponentials of �0ðaþ ayÞ as a product of
exponentials of ay and a. This step leads to normal order-

ing of ay, a [27] and generates a factor of e��2
0
=2. We then

write out the series expansion of the exponentials, drop-
ping terms with explicit time dependence. Finally, we
simplify using the expansion of the pth Bessel function,
JpðzÞ ¼

P
nð�1Þnðz=2Þ2nþp=n!ðnþ pÞ! This results in an

effective Hamiltonian

HðpÞ ¼ @�ðpÞaya� ð�iÞp ~EJ

2
:

½ðayÞp þ ð�1Þpap�
Jp
�
2�0

ffiffiffiffiffiffiffiffiffi
aya

p �
ðayaÞp=2 :; (2)

where ~EJ ¼ EJe
��2

0
=2 [28] and the colons signify normal

ordering.
Taking into account weak coupling between the cavity

and the modes in the external microwave transmission line
[26], we apply input-output theory [2,27,29] and obtain the
Heisenberg equation of motion,

_a ¼ �
�
i�ðpÞ þ �

2

�
aþ ffiffiffiffi

�
p

ain þ ð�iÞp�1

� ~EJ�0

2@
:

�
ay

a

�ðp�1Þ=2
Jp�1ð2�0

ffiffiffiffiffiffiffiffiffi
aya

p
Þ:

þ ip�1
~EJ�0

2@
:

�
a

ay

�ðpþ1Þ=2
Jpþ1ð2�0

ffiffiffiffiffiffiffiffiffi
aya

p
Þ:; (3)

where � and the operator ain describe damping and noise,
respectively, arising from the coupling to external modes.
Assuming zero temperature, the noise operator is described

by the correlation functions [27]: hainðtÞi ¼ hayinðtÞi ¼ 0,

hainðtÞainðt0Þi ¼ hayinðtÞayinðt0Þi ¼ hayinðtÞainðt0Þi ¼ 0, and

hainðtÞayinðt0Þi ¼ �ðt� t0Þ.
We can use Eq. (3) to obtain an approximate description

of the average behavior of the system together with the
corresponding fluctuations. We make the replacement a ¼
�þ �a (and a corresponding one for ay), where � ¼ hai
is a complex number and the operator �a describes quan-
tum fluctuations. From the definition of �, we see that the
average of the fluctuations must vanish, h�ai ¼ 0, and
provided they are small we can discard powers of these
operators beyond linear order. This amounts to a semiclas-
sical description which also incorporates the zero point
fluctuations of the mode [27].
Average dynamics and fluctuations.—The equation

of motion for � is obtained by making the replacement
a ¼ �þ �a in Eq. (3), retaining only terms of linear order
in �a, and taking the expectation value. Using the defini-
tion � ¼ Ae�i� to introduce real variables for amplitude A
and phase � we find

_A ¼ ��

2
A� ~EJ�0

2@
sin½pð�� �=2Þ�½Jp�1ð2A�0Þ

þ Jpþ1ð2A�0Þ�; (4)

_� ¼ �ðpÞ � ~EJ�0

2A@
cos½pð�� �=2Þ�½Jp�1ð2A�0Þ

� Jpþ1ð2A�0Þ�: (5)

The system possesses a rich variety of fixed points [13]
whose locations (A0, �0) follow from Eqs. (4) and (5).
Focusing for simplicity on the cases where the system is

on resonance (�ðpÞ ¼ 0), these points can be divided into
three classes. For p > 1, there is always a fixed point at
zero amplitude (though it may not be stable). Beyond this,
there are fixed points which owe their existence purely to
the presence of dissipation in the system (which we shall
refer to as type-I fixed points). These fixed points have

phases �0 ¼ �ðpÞ
I with cos½pð�ðpÞ

I þ �=2Þ� ¼ 0, and the

amplitudes A0 ¼ AðpÞ
I are solutions of

AðpÞ
I ¼ � ~EJ�0

�@
½Jpþ1ð2�0A

ðpÞ
I Þ þ Jp�1ð2�0A

ðpÞ
I Þ�: (6)
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Finally, there is a set of points related to the extremal points

in the underlying Hamiltonian whose amplitudes A0 ¼
AðpÞ
II are determined by turning points of Bessel functions

J0pð2�0A
ðpÞ
II Þ ¼ 0 with phases given by

sin½pð�ðpÞ
II � �=2Þ� ¼ � AðpÞ

II @�

2 ~EJ�0Jpþ1ð2�0A
ðpÞ
II Þ

: (7)

The equations of motion for the fluctuations about a
given fixed point (A0, �0) take the form

_�a
_�ay

 !
¼

�i½�ðpÞ þ �ðpÞðA0; �0Þ� � �=2 gðpÞðA0; �0Þ
g�ðpÞðA0; �0Þ þi½�ðpÞ þ �ðpÞðA0; �0Þ� � �=2Þ

0
@

1
A �a

�ay

 !
þ ffiffiffiffi

�
p ain

ayin

 !
; (8)

where

�ðpÞðA0; �0Þ ¼
~EJ�

2
0

@
Jpð2�0A0Þ cos½pð�0 � �=2Þ�; (9)

gðpÞðA0; �0Þ ¼ �i
~EJ�

2
0

2@
fJp�2ð2�0A0Þeiðp�2Þð�0��=2Þ þ Jpþ2ð2�0A0Þe�iðpþ2Þð�0��=2Þg: (10)

The eigenvalues of the matrix in (8) determine the stability
of the corresponding fixed point; the solution of the
coupled equations allows the stationary state fluctuations
of the system to be obtained,

h�a�ay þ �ay�ai ¼ ð�ðpÞ þ �ðpÞÞ2 þ �2=4

ð�ðpÞ þ �ðpÞÞ2 þ �2=4� jgðpÞj2
;

(11)

h�a2i ¼ gðpÞ
�þ 2ið�ðpÞ þ �ðpÞÞ

h�a�ay þ �ay�ai: (12)

Fluctuations in the energy of the system are described
by the Fano factor F ¼ ðhn2i � hni2Þ=hni, where n ¼ aya.
Because the system has a tendency to possess multiple fixed
points with the same amplitude, but different phases, ampli-
tude squeezing (characterized by F < 1) occurs more widely
than quadrature squeezing. For fixed points where A0 � 1,
corrections of order 1=A0 can be neglected, leading to

F ¼ h�ay�aþ �a�ayi þ e2i�0h�a2i þ e�2i�0hð�ayÞ2i:
(13)

The Fano factor depends on the particular fixed point the
system is at (as we discuss below). The most interesting
behavior is seen when the system is at one of the type-II
fixed points for which we find (on resonance)

F ¼ zpJpðzpÞ
2½zpJpðzpÞ � pJpþ1ðzpÞ� ; (14)

where z ¼ zp is a solution of J
0
pðzÞ ¼ 0. Remarkably, these

values depend only on the resonance and fixed point
involved and are universal in the sense that they are inde-
pendent of the system’s parameters.

It should certainly be possible to measure the quantum
fluctuations in experiment. Squeezing has already beenmea-
sured in several microwave systems [30–33]. Furthermore,

reconstruction of the full Wigner function of a microwave
field using quadrature measurements (an approach well
suited to the large photon numbers states relevant here)
was demonstrated recently [2].
One-photon resonance.—We now examine in detail the

one-photon resonance (p ¼ 1) at !d ¼ !0, focusing on
the behavior as a function of EJ [34] (since this could in
practice be varied via the flux applied to the SQUID
[24]). Figure 2 shows how the average energy of the steady
state hni evolves with EJ when the system is on resonance

(�ð1Þ¼0). The analytical results, given by the square of the
corresponding stable fixed point amplitude, are compared
with a numerical solution [35] of the Lindblad master
equation equivalent to Eq. (3), which provides a check
on the validity of the analytical approach [36].
For very small EJ there is a single stable (type-I) fixed

point whose amplitude grows linearly with EJ, hence the

FIG. 2 (color online). Average energy hni calculated numeri-
cally for the full quantum problem (full curves) compared with
stable fixed point amplitudes (dashed curves) for the p ¼ 1, 2
resonances. The stable fixed point changes from AI to AII at
EJ ¼ 0:405 (0.666) for p ¼ 1ð2Þ and the threshold where A ¼ 0
becomes unstable for p ¼ 2 is Ec

J ¼ 0:278. The inset is a

magnified part of the p ¼ 2 curves. Adopting units where
@!0 ¼ 1, we take @� ¼ 10�3, �0 ¼ 0:06, �ð1Þ ¼ �ð2Þ ¼ 0,
values which are used throughout.
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energy initially grows quadratically (see Fig. 2). This
behavior is easily understood by expanding Eq. (2) for
p ¼ 1 to lowest order in �0; the resulting Hamiltonian

Hð1Þ’iðEJ�0=2Þðay�aÞ describes a (linearly) driven har-
monic oscillator. As EJ increases further nonlinear effects
become important and this approximate Hamiltonian
becomes inadequate.

A bifurcation occurs when ~EJ ¼ @�z1=½4J0ðz1Þ�2
0�,

where z1 ’ 1:841 is the first maximum of J1ðzÞ, at which
the type-I fixed point becomes unstable. Above the bifurca-
tion there are two stable type-II fixed points which both have

amplitude Að1Þ
II ¼ z1=ð2�0Þ (independent of both EJ and �).

The fluctuations of the cavity mode are shown in Fig. 3.
Amplitude squeezing occurs across the whole parameter
regime studied and quadrature squeezing below the bifur-
cation between the type-I and type-II fixed points.
Approaching the bifurcation from below, the linearized
theory predicts F ! 0:5. For p ¼ 1 amplitude squeezing
coincides with quadrature squeezing at the type-I fixed point
with �X2

�¼0 ¼ F, where we define the quadrature X� ¼
ae�i� þ ayei�. Above the bifurcationF saturates rapidly to
the universal value 0.7092 given by Eq. (14) for p ¼ 1.

Two-photon resonance—Next we turn to the behavior
of the system at the two-photon (p ¼ 2) resonance. The
average energy of the cavity for p ¼ 2 is shown as a
function of EJ in Fig. 2. In this case there is a clear
threshold after which the energy rises rapidly before
leveling off and becoming independent of EJ.

The threshold arises because A ¼ 0 is now a stable fixed
point for sufficiently small EJ and significant occupation of
the cavity only occurs when it becomes unstable at ~EJ ¼
@�=�2

0. For weak couplings and low photon numbers we

can again expand the Hamiltonian to lowest order in �0;

in this case Hð2Þ ’ EJð�0=2Þ2ðaaþ ayayÞ. This limiting
form of the Hamiltonian is that of a degenerate parametric
amplifier [37] and the two systems behave in the same way
in the below-threshold regime [19].

Above threshold, a pair of type-I fixed points (which
both have the same amplitude) is stable. The amplitude
increases rapidly with EJ until these points in turn become
unstable with a bifurcation at ~EJ ¼ @�z2=½4J1ðz2Þ�2

0�,
where z2 ’ 3:054 is the first maximum of J2ðzÞ. Above
this bifurcation a new set of type-II stable fixed points

emerge with amplitudes Að2Þ
II ¼ z2=ð2�0Þ.

The corresponding fluctuations of the cavity mode are
shown in Fig. 4. Below threshold the system behaves like
the degenerate parametric amplifier [37] displaying squeez-
ing of X�¼�=4. The linear theory predicts �X2

�¼�=4 ! 0:5

as the threshold is approached from below while the uncer-
tainty in the conjugate quadrature�X�¼��=4 diverges. The

threshold is accompanied by a peak in F, which then drops
abruptly and the linear theory again gives F ! 0:5 at the
bifurcation between the type-I and type-II fixed points.
Above the second bifurcation F goes to the universal value
0.8753 predicted by Eq. (14).
Conclusions.—We derived an effective Hamiltonian

describing an experimentally accessible Josephson
junction-cavity system close to resonances which occur
when Cooper pairs crossing the junction excite photons
in a cavity mode. The system displays amplitude and
quadrature squeezing for a wide range of parameters.
Furthermore, the amplitude fluctuations of the cavity
mode can take universal values which are independent of
the system’s parameters.
Our work provides a starting point for a number of

interesting future studies. The RWA Hamiltonian [Eq. (2)]
can be used investigate the quantum dynamics of the system
beyond the regime of linear fluctuations [7,38,39]. It would
also be interesting to explore the behavior of the single
mode system in the regime where EJ is large. Classically,
the system can undergo period doubling bifurcations and
become chaotic as EJ is increased, but in this regime the
RWA will be inadequate and a more comprehensive

FIG. 3 (color online). Fluctuations in the energy F (lower full
curve) and quadrature �X�¼0 (upper full curve) calculated

numerically as a function of EJ for p ¼ 1. Analytic results for

the fixed points Að1Þ
I (for EJ < 0:405) and Að1Þ

II (for EJ � 0:405)
are shown as dashed curves. The horizontal line is the value of F
given by Eq. (14).

FIG. 4 (color online). Fluctuations at the p ¼ 2 resonance.
The main plot shows F, numerics (full curve) are compared
with analytic results when A0 > 0: the dashed curve is for the AI

fixed points and the horizontal line, given by Eq. (14), describes
the AII fixed points. Threshold is Ec

J ¼ 0:278 and the bifurcation

between AI and AII fixed points is at EJ ¼ 0:666. The inset
compares analytic (dashed curves) and numerical (full curves)
calculations of �X�¼��=4 below threshold.
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description is required. Finally, the RWA approach can be
extended in a straightforward way to analyze situations
where the bias voltage is chosen to excite two modes [17]
simultaneously [see Eq. (1)], where interesting correlations
between the modes may be expected.
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