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For a double quantum dot system in a parallel geometry, we demonstrate that by combining the effects

of a flux and driving an electrical current through the structure, the spin correlations between electrons

localized in the dots can be controlled at will. In particular, a current can induce spin correlations even if

the spins are uncorrelated in the initial equilibrium state. Therefore, we are able to engineer an entangled

state in this double-dot structure. We take many-body correlations fully into account by simulating the

real-time dynamics using the time-dependent density matrix renormalization group method. Using a

canonical transformation, we provide an intuitive explanation for our results, related to Ruderman-Kittel-

Kasuya-Yoshida physics driven by the bias.
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Introduction.—Considerable progress in nanotechnol-
ogy in the last decades has made possible the fabrication
of new artificial structures [1,2] such as quantum dots,
quantum rings, or molecular conductors. The physics of
quantum dots in a parallel geometry is intriguing, since it
allows one to study interference effects between electrons
traveling through different paths, most notably realized in
the Aharanov-Bohm effect. Such structures have been
studied in several experiments [3,4]. Besides the interest
in practical applications in nanoelectronics or in funda-
mental many-body physics such as the Kondo effect [4–6],
double quantum dots (DQDs) also play a vital role in the
context of quantum information processing [7–9].
Generating, controlling, and detecting entangled states in
condensed matter systems is one of the challenges for
future quantum computation applications [10]. Various
proposals for entangling spatially separated electrons
have been put forward, such as, for instance, by splitting
Cooper pairs [11,12] or by manipulating spins in quantum
dots [13]. In a DQD, an entangled state can be realized by
putting the electrons into a singlet state [7,8,14]. Means of
detecting entangled states of electrons were discussed in,
e.g., Refs. [11,15].

In this Letter, we demonstrate that an entangled state
between electrons localized in a DQD embedded in an
Aharonov-Bohm interferometer can be induced and con-
trolled by sending an electrical current through the struc-
ture. In the presence of a flux, the initial state can even be
fully uncorrelated yet the nonequilibrium dynamics results
in nonzero spin correlations in the steady state. The sign
and the strength of such steady-state spin correlations
depend on voltage, interactions, and the flux. The genera-
tion of entanglement through nonequilibrium dynamics in
quantum dots, with different setups, has been discussed in
Ref. [16]. An additional motivation for our work stems

from the current interest, both from theory [17,18] and
from experiment (see, e.g., [19]), in the nonequilibrium
dynamics of nanostructures with strong electronic correla-
tions. We emphasize that we treat both interactions and
nonequilibrium dynamics in a well-controlled manner
using the time-dependent density matrix renormalization
group (DMRG) method [20]. As we will see, the effect of
inducing spin correlations is the largest at voltages
��ðW=4Þ (W is the bandwidth of the reservoirs) where
Kondo correlations cease to matter [2,5].
The model.—We model the quantum dots as Anderson

impurities resulting in the Hamiltonian [depicted in the
inset of Fig. 1(a)],
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FIG. 1 (color online). (a) Current JðtÞ for � ¼ 0 and �.
(b) Spin correlation S12ðtÞ and concurrence C12ðtÞ. All for
N ¼ 41, U ¼ 0:5, V ¼ 0:5. Inset in (a): Sketch of the DQD
structure.
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H ¼ Hl þHhy1 þHhy2 þHint; (1)

Hl ¼
X

�¼L;R

XN�1

i¼1;�

½�t0ðcy�i�c�iþ1� þ H:c:Þ�

þ X

�¼L;R

XN

i¼1;�

��n�i�; (2)

Hhy1 ¼ �t01½dy1�cL1� þ cyR1�d1� þ H:c:�; (3)

Hhy2 ¼ �t02½dy2�cL1� þ ei�cyR1�d2� þ H:c:�; (4)

Hint ¼
X

j¼1;2;�

½Unj�nj �� þ Vgnj��: (5)

The system size is 2N þ 2 where N is the number of sites
in the left or right lead. The two dots are at the center of the
system labeled by j ¼ 1, 2. The Hamiltonian consists of
four parts: First, the noninteracting leadsHl with a constant
hopping matrix element t0 ¼ 1 used as the unit of energy
(@ ¼ 1, e ¼ 1). Second, the terms Hhy1 and Hhy2 give rise

to the hybridization between the localized levels of the dots
and the leads. We consider fully symmetric tunnel cou-
plings, i.e., jt01j ¼ jt02j ¼ t0 (see the Supplemental Material
[21] for a discussion of asymmetric couplings). We define
the tunneling strength by � ¼ 2�t02�leadsðEFÞ ¼ 2t02,
where �leadsðEFÞ is the local density of states (LDOS) of
the leads at the Fermi energy EF. In the hopping matrix
element between the second dot and the right lead we
incorporate an arbitrary phase �. Finally, there is the
interacting region Hint with the two quantum dots, which
are both subject to the same Coulomb repulsion U and a
gate potential Vg ¼ �U=2 such that both dots are kept at

half-filling. The operator cy�l� (c�l�) creates (annihilates)
an electron at site l in the � ¼ L, R lead with spin � while

dyj� (dj�) acts on dot j; n�l�¼cy�l�c�l� as usual. In Eq. (2),

�L and �R mimic the chemical potentials of the leads.
The ground state and the linear conductance of DQDs

Eq. (1) were extensively studied in Ref. [22]. A closely
related DQD model with a finite flux � and with spin-
polarized electrons was discussed in Ref. [23].

The phase included in Eq. (4) may have a different
meaning depending on the specific physical realization.
The most obvious one is to associate � with a magnetic
flux that pierces the ring structure containing the two dots
and the first site from each lead as shown in Fig. 1(b). As
usual, one can use a gauge transformation such that the flux
appears in only one of the four hopping matrix elements.
Another situation described by Eq. (4) is a single quantum
dot with two levels where by symmetry the levels can
couple with a phase difference to the leads.

We use DMRG [20] to obtain the steady state in the
presence of a finite bias voltage by time-evolving the wave
function j�ðtÞi and then measuring its properties such as
the current and spin correlations as a function of time t.
This method has been successfully used to study nonequi-
librium transport through nanostructures with electronic

correlations [17,24,25]. We evaluate the spin correlations
from [26]

S12ðtÞ ¼ h�ðtÞj ~S1 � ~S2j�ðtÞi: (6)

The current between two sites in the leads is defined as

Jl;mðtÞ ¼ it0
X

�

h�ðtÞjcyl�cm� � cym�cl�j�ðtÞi: (7)

In the figures, we display the current J ¼ ðJL2;L1 þ
JR1;R2Þ=2 averaged over the first link in the left and right

lead.
Our simulations start from the system in equilibrium

with a finite � � 0 and a charge per spin of hnj�i ¼ 0:5

on both dots. At time t ¼ 0, we turn on a bias voltage
V ¼ �L ��R that drives the system out of equilibrium.
We work at large values of � ¼ 0:25 such that the transient
dynamics to reach the steady state is short [25]. The two
quantum dots are treated as a supersite permitting the use
of a Trotter-Suzuki breakup of expð�iHtÞ [27]. The time
step is �t� 0:1 and we enforce a fixed discarded weight
[27] of 10�5 or less, keeping a maximum of 2000 DMRG
states. All runs are performed at an overall half-filling of
dots and leads.
Results.—In Fig. 1, we elucidate the time dependence of

the current and spin correlations, comparing the behavior
of � ¼ 0 to � ¼ �. Similar to a single quantum dot [25],
the current undergoes transient dynamics, and then takes a
quasistationary value (i.e., a plateau in time), which we
shall refer to as the steady-state regime. Note that on finite
systems, there is a system-size dependent revival time,
resulting in a decay of the steady state current and a sign
change (realized for t * 38). For a discussion of transient
time scales as well as an analysis of time dependent data
for currents, see Ref. [25].
For the spin correlations shown in Fig. 1(b), we first

observe that in the initial state, S12 > 0 for � ¼ 0 whereas
the correlation vanishes for � ¼ �. The application of the
bias voltage does virtually not affect the value of S12 for
� ¼ 0, which remains positive. The more interesting
behavior is realized for � ¼ �. As a function of time,
S12 decreases and approaches a roughly constant value.
The transient time is comparable to the one for the current
and is of order 1=�. Moreover, the transients are sup-
pressed by increasing the bias, similar to a single quantum
dot [25]. This finite and large spin correlation between the
spins localized in the dots that emerges in the steady state
and that is induced by driving a current through the struc-
ture is the main aspect of our work. It implies that non-
equilibrium dynamics can be used to prepare a DQD in a
correlated and thus entangled state.
To link the spin correlations to entanglement we use the

concurrence C12 [28,29]. For instance, the concurrence
approaches C12 ¼ 1 if the spin correlation is �3=4 and if
there are no charge fluctuations on the dots [21]. In Fig. 1(b)
we include the concurrence versus time calculated for
� ¼ �. We observe that for t ¼ 0 the concurrence is zero
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showing that the dots are not entangled. Applying the bias,
and after reaching the steady state for the spin correlations,
the concurrence takes a value C12 � 0:3 corresponding to a
finite entanglement between the dots.

The qualitative behavior of the spin correlations can be
understood by using a canonical transformation of the
states of the leads, which is given by (see, e.g.,
Refs. [23,30])

c�l� ¼ ðcRl� � cLl�Þ=
ffiffiffi
2

p
; (8)

where � ¼ s, a are the symmetric and antisymmetric
combinations, respectively. The result of this transforma-
tion is sketched in Fig. 2, where the leads shown there now
represent the new states obtained from Eq. (8). In the
absence of a bias voltage, there is no direct coupling
between these new states, as depicted in Figs. 2(a.1) and
(b.1). Most importantly, the dots are coupled to only the
symmetric states for� ¼ 0, whereas for� ¼ �, dot j ¼ 1
is coupled to the symmetric states and dot j ¼ 2 to the
antisymmetric ones. For � ¼ 0, the Ruderman-Kittel-
Kasuya-Yoshida (RKKY) interaction gives rise to a ferro-
magnetic correlation between the dots since each path that
connects them involves an odd number of sites and since
the leads are at half-filling [22]. For � ¼ �, the dots are
part of two decoupled subsystems and therefore, S12
vanishes.

Upon applying a bias, one effectively obtains a ladder
geometry where the voltage acts as a transverse coupling
between the symmetric and antisymmetric states of Eq. (8)
as shown in Figs. 2(a.2) and (b.2). For� ¼ 0, the coupling
V only marginally affects the correlations. By contrast, for
� ¼ � and V � 0, the dots are now connected through
paths with an even number of sites in the effective leads
and therefore, in the ground state of such a geometry, one
expects a finite negative spin correlation. Our numerical
results shown in Fig. 1(b) unveil that the same behavior
occurs in nonequilibrium as well. While here we focus on
fully symmetric tunnel couplings, the main results can be
recovered in the case of asymmetric couplings [21], and

therefore, fine-tuning of parameters is not necessary to
observe a change of S12 induced by a bias V.
After qualitatively explaining the emergence of finite

spin correlations in the current-carrying stationary state,
we next study the dependence of the steady-state properties
on the bias potential. We denote the steady-state values by
hS12i and hJi, obtained from averaging over time-
dependent data in the steady-state regime (compare
Ref. [25]). Figure 3(a) shows hJi=V versus V for phases
� ¼ 0 and �. For � ¼ 0, hJi=V approaches a constant
value at low bias [22]. For � ¼ �, the linear conductance
vanishes due to the Aharanov-Bohm effect [23]. A finite
voltage causes a finite current to flow in both cases, but
hJi=V for � ¼ 0 is always larger than in the � ¼ � case.
In Fig. 3(b), we display the steady-state spin correlations

hS12i versus V. First, let us emphasize that data for the
steady-state values obtained from systems of different
lengths are included, showing that all our main results
are quantitatively robust against finite-size effects. For
� ¼ 0, a constant value of hS12i> 0 is found. A slight
decrease appears for V * 1, which we trace back to the
variation of the LDOS of the leads seen by the dots. Since
in our simulations we work with tight-binding bands with a
finite bandwidth and band curvature, this LDOS decreases
with V. For the case of� ¼ �, the value of the steady-state
correlations can be tuned by the bias voltage and in fact,
hS12i increases with U. Therefore, to obtain a strong cor-
relation a large voltage is needed putting the system out of
the Kondo regime. As the figure clearly shows, we can get
to hS12i � �0:25 for U=� ¼ 2. We therefore realize a
mixed state with singlet correlations dominating over trip-
let correlations. If there were no charge fluctuations then
this value of S12 would correspond to a Werner state
[31,32] with 50% of the weight in the singlet. In our
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FIG. 2 (color online). Illustration of the canonical transforma-
tion Eq. (8). (a) � ¼ 0. (b) � ¼ �. (a.1), (b.1): V ¼ 0; (a.2),
(b.2): V � 0. The application of the bias leads to a ladder
structure where the bias acts like a transverse hopping matrix
element between the symmetric (s channel) and antisymmetric
states (a channel) defined in Eq. (8).
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case, however, the current needed to obtain the entangled
state typically induces charge fluctuations at large V.
Therefore, hS12i � �1=4 implies an even larger relative
contribution of the singlet over the triplet than in a situation
without any charge fluctuations. The fact that a finite
voltage unavoidably induces charge fluctuations is the
reason why the steady-state spin correlations do not reach
their largest possible value �3=4.

The steady-state values further depend on U=�. To
elucidate this, we plot hS12i versus U in the inset of
Fig. 3(b) for a fixed value of V ¼ 0:5, by increasing U=�
to 4, i.e., in a regime where charge fluctuations are still
relevant even in equilibrium. As expected, the largerU, the
more strongly charge fluctuations are suppressed, leading
to larger steady-state spin correlations. Therefore, either a
large U=� at a fixed voltage or applying a large voltage
order of V � t induces the largest steady-state correlations.
Fortunately, many experiments with DQDs realize U=� *
10 [4,5], thus relaxing the requirement on voltage. An
important role of U is to define a local spin as in
many other quantum information application of quantum
dots [8].

So far we have investigated the dependence of correla-
tions on V, U, and � in nonequilibrium, comparing the
cases of � ¼ 0 to � ¼ �. An additional degree of tuna-
bility can be added if the phase can take arbitrary values
(see Fig. S1 in the Supplemental Material [21]). As
expected from the discussion of Fig. 2, hS12i is positive
for small � at V ¼ 0 and then decreases to zero as � ¼ �
is approached. This transition to the uncorrelated case of
� ¼ � is continuous. At a finite voltage, it is possible to go
from positive steady-state correlations to negative ones by
changing �. For the parameters of Fig. 3(a), the steady-
state correlations change sign at�c � 0:18� (see Fig. S1).
This value depends both on U and V. To summarize, the
steady-state correlations can be tuned both in sign and
magnitude by changing V, �, and U. We have further
verified that the steady-state correlations are independent
of the initial conditions [21].

Based on the qualitative picture developed so far, we
conclude that the steady-state correlations are a result of
mixing the symmetric and antisymmetric states of lead
electrons in nonequilibrium.At finiteU, thismay be viewed
as an RKKYeffect in nonequilibrium. A discussion on how
to estimate the effective indirect coupling JeffðVÞ induced
by the bias can be found in the Supplemental Material [21].
As is well known from the physics of the RKKY effect in
equilibrium, the spin correlation induced by indirect ex-
change is destroyed for temperatures larger than � [33]. For
the nonequilibrium version of RKKY discussed here, we
expect that temperatures should be smaller than the effec-
tive strength JeffðVÞ shown in [21] for thermal fluctuations
not to affect the induced correlations.

Finally, we study the behavior of S12 under quenches of
parameters of the Hamiltonian Eq. (1). We proceed as
before, i.e., a finite bias voltage V > 0 is turned on at

t ¼ 0, and in addition we instantaneously change some
of the tunnel couplings at a time tq � 0.

We find that if we disconnect the quantum dots from the
leads at time tq > 0 by setting t01 ¼ t02 ¼ 0 after the steady

state has been established, as expected, the spins remain in
a correlated state after isolating them from the reservoirs
(see Fig. S4(b) in Ref. [21]).
In a second example, after reaching the steady state, we

isolate one of the dots while the current continues to flow
through the other. This results in the loss of the spin
correlations after a short transient time (see Fig. S4(c) in
[21]). Therefore, control over the tunneling matrix ele-
ments allows one to put the system back into its original
uncorrelated state. Both the generation of entanglement
and the removal happen on short time scales, similar to
the proposals discussed in Ref. [16].
Summary.—In this work, we demonstrated that spin

correlations between spatially separated electrons local-
ized in a parallel DQD embedded in the rings of an
Aharonov-Bohm interferometer can be induced and modi-
fied by driving a current through the structure. The steady-
state correlations depend on voltage, the flux, and Coulomb
interactions. Control over the individual tunneling cou-
plings would allow one to isolate the entangled spins
from the environment or to remove the entanglement
again. The mechanism behind this time-dependent forma-
tion of correlations can be thought of as an RKKYeffect in
nonequilibrium. Our results may be relevant for applica-
tions of DQD structures in quantum information
processing.
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