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The edge structure of the � ¼ 2=3 fractional quantum Hall state has been studied for several decades,

but recent experiments, exhibiting upstream neutral mode(s), a plateau at a Hall conductance of 1
3 ðe2=hÞ

through a quantum point contact, and a crossover of the effective charge, from e=3 at high temperature to

2e=3 at low temperature, could not be explained by a single theory. Here we develop such a theory, based

on edge reconstruction due to a confining potential with finite slope, that admits an additional � ¼ 1=3

incompressible strip near the edge. Renormalization group analysis of the effective edge theory due to

disorder and interactions explains the experimental observations.
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Ever since it has been realized that the low energy
dynamics of quantum Hall (and particularly fractional
quantum Hall) systems is related to the edge, and that the
latter can be described by chiral Luttinger liquids [1], the
interest in edge state physics has surged. While the struc-
ture of the edge, for simple fractional filling factors, is
believed to be well understood, there is recently growing
experimental evidence that the situation is much more
intriguing and exciting than had been initially believed,
when more complex fractions are involved. In this Letter
we focus on the � ¼ 2=3 edge. Ostensibly simple, the
physics of this edge involves some of the intricacies appli-
cable to other fractions, i.e., edge reconstruction and the
emergence of novel elementary excitations (neutral modes
in the present case). The major experimental observations
addressed by us are as follows: (a) The conductance
through a quantum point contact (QPC) exhibits a plateau
(versus split-gate voltage) at G ¼ 1

3 ðe2=hÞ [2,3]. (b) An

upstream heating of the QPC has been observed [4].
(c) The effective charge, detected through shot noise mea-
surements [3], crosses over from e� ¼ 1=3 at higher tem-
perature to e� ¼ 2=3 at lower ones.

Theoretical works have attempted to account for these

observations. Observation (a) has been explained [2,5] by

positing that the current at the edge of the � ¼ 2=3 state is

carried by two �� ¼ 1=3 edge states, each having the

characteristics of a � ¼ 1=3 edge state. While one of these

edges is reflected at the QPC, the other is adiabatically

transmitted. Observation (b) is associated with a counter-

propagating neutral mode, consistent with the Kane-

Fisher-Polchinski (KFP) theory [6]. This theory is based

on the renormalization of the original counterpropagating

�� ¼ 1 and �� ¼ �1=3 edge channels (ECs) [7,8] due to

interactions and disorder. Observation (c) has been attrib-

uted [9] to the competition between relevant operators

within the context of the KFP theory. Clearly, there is no

single theory currently that can account for all these ex-
perimental observations.
Our theory is based on an edge structure first proposed in

Ref. [10]. It accounts for all these observations, and pro-
vides a general scheme to deal with complex edge struc-
tures. According to Ref. [10], the finite slope of the
confining potential may lead to a reconstruction of the
edge (see also Ref. [11]), resulting in four parallel edge
channels. The latter correspond to filling factor disconti-
nuities �� ¼ �1=3, þ1, �1=3, þ1=3 (moving from the
inner edge channel to the outer one; see Fig. 1). Due to the
interplay between the interaction energy and the confining
potential, the distance between the inner three modes and
the outermost edge could be finite and large, an observation
supported by the numerical calculation of Ref. [10]. Hence
we expect the set of inner ECs to first mix and renormalize
among themselves (due to disorder and interaction). In this
regime, the emergence of the 1=3 plateau [observation (a)]
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FIG. 1 (color online). The reconstructed edge. (a) The filling
factor of the particle-hole conjugate wave function [7,8] grows
from � ¼ 2=3 in the bulk to � ¼ 1 towards the edge, before
falling to zero. In addition, for a smooth potential, the competi-
tion between Coulomb and potential energy admits an additional
incompressible strip of � ¼ 1=3. (b) The four associated edge
modes are depicted, with arrowheads indicating the direction
of each mode [downstream (right movers) or upstream (left
movers)].

PRL 111, 246803 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

13 DECEMBER 2013

0031-9007=13=111(24)=246803(5) 246803-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.246803


is straightforward, as the inner three modes are reflected,
while the outer �� ¼ þ1=3mode is transmitted. However,
in order to understand the upstream neutral mode [obser-
vation (b)] in this regime, one has to carry out a renormal-
ization group (RG) flow calculation within the subspace of
the inner three modes. We find (see below) a wide range of
parameter space [the green (light gray) strips and the blue
(dark gray) hexagram in Fig. 2(d)] where there are inter-
mediate RG fixed points supporting such an upstream
neutral mode (or modes) [see Fig. 2(b)]. At sufficiently
low temperatures the relevant coupling to the outer edge
begins to play a role, resulting in further renormalizations
of the ECs. The emergent picture is that of a �� ¼ þ2=3
(downstream) EC, an upstream neutral EC (similar to the

KFP theory), and two localized charged modes. The cross-
over from the intermediate to the low temperature regime
explains observation (c).
The model.—A general clean edge is described by the

action [1]

S0 ¼ 1

4�

Z
x;�
½@x�iKiji@��j þ @x�iVij@x�j� (1)

(summations over repeated indices are implied). V repre-
sents inter- and intrachannel interactions. The bosonic
fields �i (i ¼ 1; . . . ; N) are quantized with the usual com-
mutation relations ½�iðxÞ; �jðyÞ� ¼ i�K�1

ij sgnðx� yÞ. The
symmetric N � N integer matrix K characterizes the in-
ternal structures (the topological orders) in the quantum
Hall fluid [12,13]. In addition, the charge vector t describes
the coupling between the charge density in each channel
and an external electric field. The total electric charge
density is thus �el ¼ ð1=2�Þti@x�i, where the ti’s are the
components of t. The different channels may, in addition,
be coupled by impurity scattering [6,11], with an addi-
tional term

Simp ¼
Z
x;�

X
n

½�nðxÞein��ðx;�Þ þ H:c:�; (2)

where � is the vector whose entries are �i, n are constant
vectors specifying the scattering processes, �nðxÞ are
the random scattering amplitudes. We consider here white
noise correlations hh�nðxÞ�n0 ðx0Þii ¼ Dn�nn0�ðx � x0Þ
[6,14,15].
The proposed � ¼ 2=3 ground state wave function [7,8],

supports two edge modes. This wave function assumes
particle-hole symmetry, and is valid for an infinitely sharp
confining potential. For a confining potential of a finite
slope, it has been demonstrated [10,11] that the competi-
tion between the Coulomb energy and the potential energy
can lead (and will indeed do so for typical experimental
parameters) to the formation of another incompressible
strip, of filling factor � ¼ 1=3 in this case. The smoother
the potential, the wider the strip, and, as a consequence (see
Fig. 1), the larger the distance between the outer edge
mode and the other modes. Thus, in the present case,
N ¼ 4, and the K matrix may be written [16] in a diagonal
form, with the elements f�3; 1;�3; 3g on the diagonal, and
t ¼ ð1; 1; 1; 1ÞT .
The intermediate temperature regime.—As mentioned

above, we assume that the outermost channel is sufficiently
far from the inner three channels, so we can first neglect the
interaction and scattering between the former and the
latter. The inner three channels are then described by three
bosonic fields (cf. Fig. 1). The K matrix will consist of the
upper left 3� 3 block of the full K matrix, and t ¼
ð1; 1; 1ÞT . The allowed scattering operators that are relevant
in parts of the parameter space in the RG sense [17] are
On ¼ ein�� with
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FIG. 2 (color online). The renormalization group (RG) flow.
(a) The bare edge channels. (b) Under RG flow, the three inner
channels are renormalized to two upstream neutral modes (as
denoted by the dashed lines) and one downstream 1=3-like
charged modes. (The ordering of the three modes is arbitrary.)
(c) When temperature is further lowered, the relevant coupling to
the outermost mode leads to localization of two modes, as
symbolized by the circle, an upstream neutral mode (dashed
line) and a downstream 2=3-like charged mode. (d) Basins of
attraction of the various fixed points for the intermediate regime,
where the outermost mode is assumed to be decoupled from the
other three modes. p1 and p2 parametrize the interaction matrix
V [17]. The green (light gray) strips mark the regions where only
one of the three potentially relevant scattering operators [Eq. (3)]
is relevant. The blue (dark gray) hexagram is where at least two
scattering operators are relevant. The thick black lines in the
middle of the green (light gray) strips are fixed lines where there
is one upstream neutral mode (in addition to a downstream
charged mode and an upstream charged mode) at the interface.
The black dot at the origin (the center of the hexagram) is a
fixed point where there are two upstream neutral modes [as
depicted in (b)].
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The RG analysis of such a three-channel system has
been looked at before [14,15], though not as an intermedi-
ate state in a larger space. Since K is a real symmetric
matrix and V a real symmetric positive definite matrix,
they can be diagonalized simultaneously

�TK� ¼ Inþ;n� ; �TV� ¼ VD; (4)

where VD is a diagonal matrix, and Inþ;n� is the pseudoi-

dentity matrix with nþ 1’s and n� �1’s in the diagonal; for
the current problem, nþ ¼ 1, n� ¼ 2. (The structure of the
transformation matrix � is further discussed in Ref. [17].)
Equation (4) amounts to transforming to the basis of the

eigenmodes ~� ¼ ��1� (we use the words ‘‘mode’’ and
‘‘channel’’ interchangeably). In addition to the amplitudes
Dn, the model has six parameters Vijði � j ¼ 1; 2; 3Þ, or in
the eigenmode basis, viði ¼ 1; 2; 3Þ, �, p1, and p2. The first
three are the diagonal elements of VD, while the latter three
characterize the transformation matrix � [17]. In terms of
the transformed fields, the scaling dimensions [17] can be

calculated very easily. The scaling dimension of eic� ~� is
simply � ¼ 1

2 c
2. The relation between c and n is c ¼

�Tn. Therefore, we find that the scaling dimensions of
the three scattering operators specified by Eq. (3) are

�n1
¼ 1þ 2p2

1; (5)

�n2
¼ 1

2
ð2þ p2

1 � 2
ffiffiffi
3

p
p1p2 þ 3p2

2Þ; (6)

�n3
¼ 1

2
ð2þ p2

1 þ 2
ffiffiffi
3

p
p1p2 þ 3p2

2Þ: (7)

Note that the scaling dimensions only depend on two
parameters p1 and p2. For an operator to be relevant, its
scaling dimension has to be smaller than 3=2 [18]. The
regions�ni

< 3=2 are the three green (light gray) stripes in

Fig. 2(d). The blue (dark gray) hexagram is where at least
two of the three operators are relevant.

In regions where none of the three operators is relevant
(uncolored regions), the amplitudes of impurity scattering
will be renormalized to zero. The other parameters will be
somewhat renormalized aswell. The result of the RGflow is
a clean but nonuniversal interface between the bulk incom-
pressible region and the additional incompressible strip.

In regions of the phase diagram [see Fig. 2(d)] where
one or more impurity operators are relevant, the theory will
be renormalized. This means that fVijg will be modified in

a nontrivial manner. Alternatively, from the point of view
of the eigenmodes, the charge vector ~t, and the vectors c in
the bosonized form of the electron and quasiparticle tun-
neling operators will all be renormalized. The coefficients
n are, evidently, unchanged.

Within any of the green (light gray) strips, the theory
flows to the center line (the thick black lines). On such a
fixed line, there is one upstream-moving neutral mode, one
upstream-moving charged mode, and one downstream-
moving charged mode [not counting the outermost mode,
i.e., the topmost one in Fig. 1(b)]. The neutral sector

realizes the csuð2Þ1 current algebra, so the strong impurity
fixed point is exactly solvable, and by simple power count-
ing one can show that it is a stable fixed point. The charge
vector in the eigenmode basis depends on the position on
the fixed line. For example, on the p1 ¼ 0 line, we have
(assuming, without loss of generality, v2 > v3)

~t ¼
0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

2

q
ffiffiffi
3

p ;
p2ffiffiffi
3

p ; 0

1
AT

: (8)

Note that the discontinuity in the filling factor (between the
bulk value 2

3 and the value before the outermost channel 13 )

�� ¼ ~t21 � ~t22 � ~t23 ¼ 1=3 is independent of p2 as it should

be [19,20].
Turning our attention to the hexagram, within this region

the RG flows are towards the center (the origin of the
p1 � p2 plane). The (0, 0) strong impurity fixed point of
the three innermodes corresponds to a downstream-moving

charge mode (with ~t1 ¼ 1=
ffiffiffi
3

p
), and two upstream neutral

modes. The neutral sector realizes the csuð3Þ1 current alge-
bra (assuming the neutral mode velocities v2 and v3 are
renormalized to the same value in higher order RG analysis,
i.e., beyond first order in the impurity strength Dn’s). We
note the similarity between Fig. 2(d) and the basins of
attraction for the principal hierarchy states � ¼ 3=5,
3=11, etc. [14].
It is interesting to compare the emerging picture to

Beenakker’smodel [5]. In our picture, the interface between
� ¼ 1=3 and � ¼ 2=3 corresponds to three renormalized

modes, ~�1 (downstream
1
3 charged mode) and two upstream

modes. It is ~�1 [assuming we are at the csuð3Þ1 point] that
conducts electric current (along with the outermost chan-
nel). In Beenakker’s picture this interface between � ¼ 1=3
and � ¼ 2=3 corresponds to an electric current-conducting
compressible strip with no inner structure. When there is a
QPC with appropriate split-gate voltage, it is possible to
form a region of � ¼ 1=3 under the constriction, with the
three inner modes fully reflected [similar to Fig. 2(b) of
Ref. [5]], but with the outermost mode fully transmitted.
This would lead to a plateau in two-terminal conductance,
G ¼ 1

3 ðe2=hÞ, in agreement with experiment [3]. On top of

Beenakker’s picture of two downstream chargedmodes, our
picture includes the upstream neutral modes [two if the

theory flows to the csuð3Þ1 point, one if to the csuð2Þ1 lines],
which have also been observed [4].
We can also consider the leading backscattering pro-

cesses at a QPC (assuming the transmission is close to 1).
With the assumption that the outermost mode is weakly
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coupled to the inner three, only the latter participate in the
backscattering from the top edge of the sample to the

bottom edge. At the csuð3Þ1 point, the scaling dimension
of the backscattering processes is simply 2� 1

2n
TM1M

T
1n,

whereM1 is as given in the SupplementalMaterial [17],n is
an integer vector specifying the quasiparticle that is back-
scattered. The factor 2 is due to the fact that now we are
considering two edges. The minimum of this expression is
1, corresponding to the most relevant tunneling operators
with n ¼ ð0;�1; 0ÞT , ð1; 2; 0ÞT , and ð2; 2; 3ÞT . All three
operators backscatter e=3 charge fromone edge to the other,
so if one measures the shot noise at theweak backscattering
limit, the effective charge inferred should be e=3.

The low temperature regime.—Since the coupling
between the outermost channel and the inner channels
(through interaction and impurity scattering) is relevant
in the RG sense, then even if its bare value is small, which
allowed us to neglect it in the intermediate temperature
regime above, it becomes significant at lower temperatures.
There is a qualitative difference between the ensuing four-
channel problem and the three-channel problem consid-
ered above. We now discuss the RG flow of the theory, and
the ensuing picture approaching the stable low temperature
fixed point. If the impurity amplitudes are small we can
still use the same RG formalism as for the three-channel
problem. We find that under renormalization, the theory
will flow to regions where only one of the (infinitely many)
zero-conformal-spin operators is still relevant (actually its
scaling dimension flows to zero). This operator involves

two of the eigenmodes, say ~�1 and ~�4, whose charge
vector components will be the same, ~t1 ¼ ~t4. These two
modes are unstable against localization. This is consistent
with Haldane’s null vector criterion about edge stability
[19]. If the initial point of the RG trajectory has a projec-
tion in the p1 � p2 plane close to the origin, the amplitude
of yet another operator will also grow and eventually have

the form ei
ffiffi
2

p
~�3 . As an impurity operator, it cannot create

electric charge. This implies that ~�3 has to be neutral,
which is indeed what we see in the result of the numerical

integration of the RG equations. In other words, ~�3 is

an (upstream-moving) neutral mode, while ~�2 is a
(downstream-moving) charged mode (~t2 is renormalized

to
ffiffiffiffiffiffiffiffi
2=3

p
), as in the KFP fixed point [6]. The neutral sector

realizes the csuð2Þ1 current algebra. At the low temperature
fixed point, the quasiparticles involved in weak backscat-
tering at a QPC are made of the remaining nonlocalized
modes only, whose action is

S ¼ 1

4�

Z
x;�

@x ~�2ði@� þ v2@xÞ ~�2

þ 1

4�

Z
x;�

@x ~�3ð�i@� þ v3@xÞ ~�3

þ
Z
x;�
½�ðxÞei

ffiffi
2

p
~�3 þ H:c�; (9)

i.e., the quasiparticle spectrum should be the same as in the
KFP problem (for a more detailed discussion of this point
see Ref. [17]). It is well known that in that case the
minimum scaling dimension for the backscattering pro-
cesses is 2=3 corresponding to a process with charge
2e=3 and two with charge e=3. When one lowers the
temperature in an experiment, there could be a crossover

from the csuð3Þ1 point (where the leading QPC backscat-
tering processes have e=3) of the three-channel problem to
the KFP point. If at the latter the amplitude of the 2e=3
process is larger than the e=3 processes, one would see a
crossover in effective charge from e=3 at high temperature
to 2e=3 at low temperature. This has actually been
observed [9].
The emergence of two separate fixed points for � ¼ 2=3

is in perfect agreement with the observed power law de-
pendence of the transmission T through a QPC in this
regime. Figure 4 of Ref. [3] demonstrates that the trans-
mission starts as a power law at low impinging current (or
low voltage) and then saturates at T ¼ 1=2 for high
voltage. The low voltage data are well described by the
KFP fixed point, which predicts that T scales at V2 [see
Fig. 1(a) in the Supplemental Material [17]]. On the other
hand, the KFP theory will predict that at high voltage T
will saturate at unity, with a correction that goes like V�2=3,
in clear contradiction to the data. Our theory, on the other
hand, claims that the high voltage data is described by a
different fixed point that supports an outer edge state of
�� ¼ 1=3. If the three inner edge states are fully reflected,
and the backscattering is only due to the outer edge state,
the transmission will saturate at T ¼ 1=2, with a correc-

tion that behaves like V�4=3, in excellent agreement with
the data [see Fig. 1(b) in the Supplemental Material [17]].
The localization transition also has an effect on the

current-voltage characteristics (for eV � kBT) of tunnel-
ing from a Fermi liquid to the edge of the fractional
quantum Hall liquid (assuming edge reconstruction also
happens in the kind of samples used in that kind of
experiment)—when one lowers the temperature from the
range where the effective charge is e=3 to where it is 2e=3,
the power in the I � V characteristics should decrease
from 3 to 2 [17,21] (or 3=2 if the neutral mode is saturated).
Summary.—We have considered a reconstructed edge at

� ¼ 2=3, consisting of four edge channels, in order to
explain outstanding experimental observations. For a
smooth potential, the interaction and impurity backscatter-
ing between the outermost channel and the other channels
at the 1

3 =
2
3 interface can be neglected at high enough

temperatures. Then we have a trivial one-channel problem
plus a nontrivial three-channel problem. The latter system
may be renormalized by interaction and impurity scatter-
ing to high symmetry fixed points. The reflection of the
inner three modes by a quantum point contact explains
the observed 1

3 ðe2=hÞ conductance plateau [2,3], while the

emergence of the neutral mode at the symmetric fixed
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points or lines explains the observed upstream heat current
[4]. At lower temperature, when the interaction and impu-
rity scattering between the outermost mode and those at the
interface cannot be neglected, the system is unstable and
will flow towards a stable low temperature fixed point: one
pair of counterpropagating modes will localize each other.
The two remainingmodes form a 2

3 =neutral KFP fixed point

[6]. This results in a crossover in the effective charge, from
e� ¼ 1=3 at high temperature to a higher effective charge
(which could be as high as e� ¼ 2=3, depending in the bare
amplitudes) at low temperatures, again consistent with
experiment [3]. Our theory is also in excellent agreement
with the the measured scaling of the transmission through a
point contact with voltage [3]. Additionally we made a
prediction concerning the crossover in the tunneling expo-
nent into the edge from a Fermi liquid. Recent experiments
[22–24] have demonstrated the complexity of the edge even
for simple filling factors. Venkatachalam et al. [24], for
example, have observed edge reconstruction at �bulk ¼ 1,
where the filling factor at the edge first goes down to � ¼
2=3, then to 1=3. The edge structure from the � ¼ 2=3
region outwards is completely consistent with our picture,
giving further credence to the theory presented here.

The authors thank M. Heiblum for discussions. Support
was provided by the Kreitman Foundation, ISF, BSF, GIF,
and MINERVA.
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