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Dirac metals (gapless semiconductors) are believed to turn into Weyl metals when perturbations, which

break either time reversal symmetry or inversion symmetry, are employed. However, no experimental

evidence has been reported for the existence of Weyl fermions in three dimensions. Applying magnetic

fields near the topological phase transition from a topological insulator to a band insulator in Bi1�xSbx we

observe not only the weak antilocalization phenomenon in magnetoconductivity near zero magnetic fields

(B < 0:4 T), but also its upturn above 0.4 T only for E==B. This ‘‘incompatible’’ coexistence between

weak antilocalization and ‘‘negative’’ magnetoresistivity is attributed to the Adler-Bell-Jackiw anomaly

(‘‘topological’’ E � B term) in the presence of weak antilocalization corrections.

DOI: 10.1103/PhysRevLett.111.246603 PACS numbers: 72.90.+y, 72.10.�d, 72.15.Qm

It is rare to observe Weyl fermions in three-dimensional
(3D) condensed matter systems. Graphene may be one
of the well-studied systems as a two-dimensional (2D)
Weyl metallic state, where two types of Weyl fermions
with opposite chirality appear at separate momenta [1].
However, no experimental evidence has been reported
for the Weyl metallic phase in three dimensions, where
they are combined more often to form Dirac fermions.
Rigorously speaking, this phenomenon is attributed to the
fact that the Dirac spinor is the irreducible representation
of the Lorentz group in three dimensions while it is the
Weyl spinor in two dimensions [2]. Recently, it has been
shown that such a Weyl metallic phase must exist near the
topological phase transition from a band insulator to a
topological insulator in 3D when either time reversal sym-
metry or inversion symmetry is not preserved at the critical
point [3–7]. Actually, the emergence of Weyl fermions has
been claimed long before when magnetic fields are applied
to gapless semi-conductors (Dirac metals) [8,9]. A Dirac
point is separated into two Weyl points with opposite
chirality in momentum space, where their distance is pro-
portional to the applied magnetic field.

The characteristic feature of a Weyl metallic phase is
that a Weyl fermion state at one Weyl point must transfer
to that at the other Weyl point when currents are driven
in the same direction as the momentum to connect two
paired Weyl points. This phenomenon is referred to as the
Adler-Bell-Jackiw anomaly, which means that the chiral
current is not conserved [8,9]. This nonlocal (in momen-
tum space), more accurately, topological ‘‘constraint’’ has
been suggested to cause anomalous magnetotransport

phenomena in 3D Weyl metals, that is, ‘‘negative’’ mag-
netoresistivity (MR) when the applied electric field is
parallel to the magnetic field. This anomalous longitudinal
MR was shown to arise from the suppression of scattering
between two Weyl points as the magnetic fields are
increased [10,11]. Unfortunately, this Weyl metallic phase
has not been confirmed experimentally. In particular, the
negative MR (or ‘‘positive’’ magnetoconductivity-MC) has
not been observed yet.
In this Letter we present evidence that supports the

emergence of the Weyl metallic phase in Bi1�xSbx near
the critical point of the topological phase transition when
magnetic fields are applied. The global phase diagram of
Bi1�xSbx is well known [12–14] (Fig. 1(a)). A topological
phase transition from a band insulator to a topological
insulator occurs at x � 3%, where massless Dirac fermions
appear near the L point. Therefore, Bi1�xSbx at x � 3% is
identified as a Dirac metal. Applying magnetic fields near
this critical point, it is natural to expect the emergence of a
Weyl metallic phase, where the single Dirac point splits
into two Weyl points with opposite chirality. The structure
of the Dirac points and the Weyl points in the reciprocal
space is schematically shown in Fig. 1(b). The magnetic
field splits the Dirac points into the Weyl points along the
direction of the magnetic field, breaking the rotational
symmetry.
We verify the emergence of the Weyl metallic phase by

measuring the angle dependence of MR, where the angle
corresponds to that between applied magnetic and electric
fields. In particular, we observe not only the weak antiloc-
alization near zero magnetic fields (B< 0:4 T) but also an
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upturn of or increasing MC above 0.4 T only when both
magnetic and electric fields are applied in the same direc-
tion. The coexistence between weak antilocalization and
negative MR is remarkable. The experimental observation
of weak antilocalization corrections is common for systems
with strong spin-orbit interactions [15–19]. On the other
hand, negative MR results from either weak localization or
interaction corrections with diffusive dynamics (diffusive
Fermi liquids) [20]. In addition, it can appear when mag-
netic fluctuations are suppressed via magnetic fields, and
thus the corresponding scattering rate decreases [21].
Considering the fact that conventional calculations based
on density functional theory describe the band structure of
Bi1�xSbx quite well [12,13], such interaction effects cannot
be the physical origin for the negative MR. Then, their
coexistence is difficult to understand within the perturba-
tion framework for both nonmagnetic randomness and
weak interactions in the presence of spin-orbit scattering.

We attribute the underlying mechanism for the upturn of
MC to the Adler-Bell-Jackiw anomaly in the presence of
weak antilocalization corrections, comparing experimental

data with theoretical results from the quantum Boltzmann
equation approach with the introduction of the topological
E � B term [22]. In the ‘‘longitudinal’’ magnetotransport
configuration where the electric field is parallel to the
magnetic field, the dynamics of Weyl fermions is topologi-
cally constrained by the topological E � B term [10,11].
As a result, the MC increases above a critical magnetic
field associated with the weak antilocalization. In contrast,
only weak antilocalization corrections to the MC were
found in the conventional ‘‘transverse’’ magnetotransport
measurements, where the magnetic and electric fields were
applied in the z and x directions, respectively. This result
suggests the unexpected coexistence of weak antiloca-
lization and the upturn of longitudinal MC as the finger-
prints of Weyl fermions in three dimensions, which arise
from the topological E � B term or the Adler-Bell-Jackiw
anomaly.
Figure 1(b) presents a schematic diagram of the experi-

ments for measuring the electrical transport coefficients,
���ðB�Þ, which are defined by the equation, E� ¼
���ðB�ÞJ�, where J� is an electric current of the � direc-

tion under a magnetic field B� in the � direction and E� is

the induced electric field in the � direction. The experi-
mental details are explained in Ref. [23].
Figure 2 shows the angle-dependent MR for the

configuration and MR up to 60 T at fixed positions, as
shown in the schematic diagram, where the configurations
for � ¼ 0� and 90� were used to measure the transverse
[Fig. 1(b)-(1)] and longitudinal [Fig. 1(b)-(3)] MRs,
respectively. All the MR data showed a narrow dip below
0.4 T. These dips are similar to those observed in graphene
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FIG. 1 (color online). (a) A topological phase transition
occurs from a band insulator (x < 3%) to a topological insulator
(x > 3%) around x � 3%, where band touching emerges to form
a Dirac cone at the L point. Applying a magnetic field B to this
Dirac metal, the Dirac point described by the four-component
Dirac spinor is split into two Weyl points described by the two-
component Weyl spinors with opposite chirality (red, blue ¼
Weyl, green ¼ Dirac). The distance between these two Weyl
points is proportional to B. The right figure depicts the structure
of the Dirac points at B ¼ 0 and that of the Weyl points at B � 0
in the reciprocal space, where the Dirac points split along the
direction of B. (b) Schematic diagram of the electrical transport
measurements.

FIG. 2 (color online). (a) Angle-dependent MR. ‘‘Negative’’
MR appears around � ¼ 90�, which originates from the Adler-
Bell-Jackiw anomaly of Weyl fermions. (b) The scaling property
of MR in the low-field region. The x axis is the perpendicular
field component of B cos�. This dip was attributed to the three-
dimensional weak antilocalization. (c) Longitudinal and trans-
verse MR for a Bi single crystal. We could not find any negative
signals in the longitudinal MR. (d) The transverse and longitu-
dinal MR measured up to 50–60 T in a pulse magnet.
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[16,17] and thin films of 3D topological insulators [18,19],
which were attributed to weak antilocalization. On the
other hand, an important difference was observed between
the previous studies and the present measurements; the
weak antilocalization in the data is due to 3D Dirac
fermions instead of 2D ones. It is noted that x � 3%
corresponds to the critical point, where 3D Dirac fermions
appear. One way to confirm the three dimensionality is to
determine if the scaling property is satisfied for different
angles. If the dynamics of Dirac fermions is 2D, only the
magnetic field perpendicular to the plane for the dynamics
of such Dirac fermions leads to cyclotron motions. This
scaling behavior was not observed in Bi0:97Sb0:03, support-
ing the 3D nature of Dirac fermions [Fig. 2(b)]. The MR
data will be fitted to the 3D expression for weak antiloc-
alization later.

Unexpected features were noted at higher magnetic
fields, particularly for the longitudinal MR configuration
of � ¼ 90�. When � is near 0�, the MR increased quadrati-
cally, indicating the dominance of orbital contributions.
This standard behavior changed drastically when �
approached 90�, where the MR decreases considerably
just after the dip up to B� 4–10 T. Above this field,
MR increases again. This negative MR is reproducible.
Although different crystals are used, it is observed both
in the static and pulsed magnetic fields. On the other hand,
we fail to observe such negative signals in pure Bi samples.
See Fig. 2(c). In addition, the negative MR was not found
deep inside the topological insulating phase, either [23].
Thus, this negative MR is difficult to understand within
the perturbation framework incorporating both electronic
(magnetic) correlations and nonmagnetic impurities in
the presence of spin-orbit interactions. The decrease in
longitudinal MR at relatively moderate magnetic fields
above the region of weak antilocalization is attributed to
the topologically constrained dynamics of Weyl fermions,
which is given by the chiral anomaly.

Both �xxðBzÞ and �xxðBxÞ are derived based on the
quantum Boltzmann equation approach with the introduc-
tion of the Adler-Bell-Jackiw anomaly via the semiclassical
equations of motion [22,23]. Unfortunately, technical com-
plexity of this methodology does not allow us to have an
intuitive physical picture for anomalous behaviors in such
transport coefficients. To make the physics more apparent,
we also derive these anomalous transport coefficients based
on the semiclassical equations of motion only, which is
essentially the same as the equation of motion with the
Lorentz force for the Hall effect in the elementary solid-
state physics except for the introduction of the topological
E � B term and the contribution of the Berry curvature.
All details are discussed in the Supplemental Material [23]
and a recent paper [22].

Disappearance of Weyl fermions with negative chirality
gives rise to the production of those with positive chirality,
where this dissipationless transfer is equilibrated by several

scattering processes to reach a steady state. The Adler-
Bell-Jackiw anomaly and possible scattering channels
are described by the semiclassical equation of motion for

the momentum, _p ¼ ð1þ e
cB ��pÞ�1feEþ e

mcp� Bþ
e2

c ðE �BÞ�pg ¼ � p
� , where � is an effective mean-free

time, determined by the intranode and internode scattering
times (node ¼ Weyl point) and �p is the Berry curvature

[23]. Solving this equation of motion to obtain the mo-
mentum as a function of both electric and magnetic fields,
we find the corresponding electrical current, J¼ ne _r¼
neð1þ e

cB ��pÞ�1fpmþ eE��pþ e
mc ð�p �pÞBg, where

the solution of the velocity was utilized from the other
semiclassical equations of motion [23]. It is essential to
notice that there are two additional contributions for elec-
tric currents other than the conventional term proportional
to the momentum, nonzero only when the Berry curvature
exists [24,25].
After several straightforward steps with the condition

for the Hall effect, Jy ¼ 0, we find the expression of

�LðBÞ ¼ ð1þ CWB
2Þ � �WAL þ �n for the longitudinal

MC in the weak field region, essentially the same as that
from the quantum Boltzmann equation approach, where
�WAL is the conductivity from weak antilocalization cor-
rections associated with intranode scattering and �n is that
from conventional Fermi surface contributions other than
the L-point ‘‘Dirac’’ cone [23]. The most important feature
is that the longitudinal MC contains an overall factor of
CWB

2 with a positive constant CW , originating from the
topological E � B term. Such a topological term turns out to
cause an additional contribution for the z-directional mom-
entum, driven by the x-directional electric field along
with the x-directional magnetic field under the influence
of Berry curvature [23]. Combined with the last term in the
expression of the current, this contribution gives rise to
the overall factor proportional to B2, which enhances the
longitudinal conductivity due to the momentum transfer
proportional to the applied magnetic field. In contrast,
the transverse MC is expressed by �TðBÞ ¼ �WAL þ �n

without the anomaly contribution because the contribution
from E � B vanishes. �WAL and �n are additive because
they originate from different bands [26]. Considering that
�n would be determined by residual charge carriers around
the T point in momentum space, the conventional Fermi-
liquid form ��1

n ¼ �0 þ A � B2 is assumed. Recalling
the scaling result for the angle dependence of MR, the

3D weak antilocalization formula, given by �WAL ¼
��WAL þ �0 ¼ a

ffiffiffiffi

B
p þ �0, where a and �0 are deter-

mined from the line of best fit, is used [27].
Figures 3(a) and 3(b) show the transverse MC �TðBÞ

and longitudinal MC �LðBÞ, respectively, where the black
circles represent the experimental data and the red lines
show the theoretical fitting based on the above equations.
The essential features of the transverse MC, such as the
sharp peak in the zero field region and the gradual decrease
up to 1.2 T are reproduced quite well with parameters of
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a¼�14:3��1T�0:5, �0¼49:6��1, �0¼4:15�10�2 �,
and A ¼ 21:8 �T�2. We restrict the region of our fitting
with �1:2 T<B< 1:2 T to compare this analysis with
the case of the longitudinal MC, where this formula is
derived in the weak field region. This successful fitting
confirms that the origin of the sharp peak is the 3D weak
antilocalization. Similarly, the peak in the zero field
region and the upturn of the longitudinal MC are also
reproduced well with a reasonable set of parameters of
a¼�20:6��1T�0:5, �0¼36:6��1, �0¼2:65�10�2 �,
A ¼ 7:3� 10�3 �T�2, and CW ¼ 1:27 T�2. All parame-
ters of a, �0, and �0 have similar values for both cases,
whereas the value of A in the longitudinal MC is much
smaller than that in the transverse MC. This is consistent
with our expectation, where the coefficient of the B2 term
in the normal conductivity from the bands around the T
point should vanish because there cannot be any orbital
motion in the longitudinal MC setup. The upturn of the
longitudinal MC above 0.4 T cannot be captured without
the correction term of CWB

2, suggesting that the origin of
this enhancement is purely topological, i.e., the chiral
anomaly in the dynamics of Weyl fermions.

The positive component of the longitudinal MC disap-
pears eventually at the critical magnetic field of B� 4 T
and the MC decreases with increasing B above 4 T. This
‘‘reentrant’’ downturn of MC may be discussed based on
the ‘‘pair-annihilation’’ scenario [23]. However, it may be
unrealistic to consider such paired Weyl points to move all
over the whole Brillouin zone away from the L point,
because the band gap is rather large for the wave vectors
away from the L point. Although our experiments are in
the semiclassical regime associated with the Adler-Bell-
Jackiw anomaly [24], it is difficult to exclude the possi-
bility for the formation of Landau levels, increasing
magnetic fields to reach the ‘‘intermediate’’ region of the
reentrant downturn behavior. It is interesting to observe
pronounced oscillations at higher magnetic fields in the

‘‘longitudinal’’ configuration [Fig. 2(d)], where the cyclo-
tron motion is not possible. In particular, we point out that
such quantum oscillations seem to start from the minimum
point of the longitudinal MR, implying that the disappear-
ance of the negative MR is correlated with the appearance
of pronounced quantum oscillations. The problem on the
crossover from the semiclassical to quantum regimes is
beyond the scope of the present investigation, which needs
to be examined more sincerely near future.
The topological nature of the Weyl metallic state is also

manifested in the unconventional transport coefficients.
Figure 4 shows the results of the in-plane transverse MR
�xxðByÞ [Fig. 1(b)-(5)], �yxðBxÞ [Fig. 1(b)-(4)], and �yxðByÞ
[Fig. 1(b)-(6)] together with the transverse MR �xxðBzÞ
[Fig. 1(b)-(1)] and �yxðBzÞ [Fig. 1(b)-(2)]. Of the most

notable feature in Fig. 4 is the B dependence of �yxðBxÞ
with reproducible B-linear and B-cubic contributions. Our
theoretical approaches reveal that such a nonlinear signal is
purely topological in its origin and is given by �yxðBxÞ ¼
ð1=necÞð�Bx þ �B3

xÞ in the weak-field limit, where � and
� are constants [23]. According to our theoretical analysis,
this is a kind of the Hall effect, which originates from 3D
Weyl fermions. Effective Lorentz forces due to the Berry
curvature and the topological E � B term cause the
y-directional electric fields, which lead eventually to the
B-linear and the B-cubic contributions, respectively. In this
respect we call it topological Hall effect. Figure 4(d) shows
the fit of the �yxðBxÞ data in the region for �4 T<B<

4 T to the formula of aBþ bB3, where a and bwere found
to be positive and negative, respectively. This formula fits
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FIG. 3 (color online). (a) Transverse magnetoconductance.
The black circles represent the experimental data and the red
lines express the theoretical fitting, where both weak antilocal-
ization corrections and normal contributions from other bands
are considered. (b) Longitudinal magnetoconductance. The over-
all factor CWB

2 in front of weak antilocalization corrections is
the key feature, which originates solely from the topological
E � B term in both the quantum Boltzmann equation and the
equation of motion approaches. This is the fingerprint of the
Weyl metallic state. FIG. 4 (color online). (a) Magnetoresistance of �xxðBzÞ

and �xxðByÞ. (b) The �yxðBzÞ and �yxðByÞ are compared.

(c) Comparison of �yxðBzÞ and �yxðBxÞ. The signal in the latter

coefficient is nonzero because of the topological Hall effect,
which results from the topological E � B term. This topological
Hall effect is regarded as another signature for the Weyl fermi-
ons. (d) Transport coefficient �yxðBxÞ with the theoretical fitting

based on the formula a � Bþ b � B3.
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the �yxðBxÞ data quite well except for the zero-field region.
Another important experimental finding is nonlinearity in
the conventional Hall resistivity [�yxðBzÞ] near the zero

magnetic field. This is thought to be the anomalous Hall
signal of the 3D Weyl fermions, which should be distin-
guished from the 2D case [28,29].

Finally, we remark two different regimes for the Adler-
Bell-Jackiw anomaly. The present analysis of the semiclas-
sical regime is justified when the chemical potential is
much larger than the cyclotron frequency. On the other
hand, the so-called ultraquantum limit is realized when
both the chemical potential and temperature are less than
the energy gap between the lowest and first Landau levels
[10,11,30]. Since only chiral branches of the spectrum are
occupied, dynamics of these electrons are essentially the
same as that of one-dimensional (1D) chiral fermions,
where intranode scattering is prohibited [23]. As a result,
the effect of the Adler-Bell-Jackiw anomaly becomes
enhanced, where the longitudinal current can be relaxed
by the internode scattering only. In this ultraquantum limit,
the correction term of the longitudinal MC is linearly
proportional to B due to 1D chiral dynamics, distinguished
from the case of the semiclassical regime [23]. All analysis
based on the ultraquantum limit failed to explain our
experimental data consistently, indicating that Fermi levels
of our samples are located far away fromWeyl points [23].

To summarize, in the topological phase transition from a
band insulator to a topological insulator in Bi1�xSbx, the
upturn behavior above 0.4 T in magnetoconductivity was
observed only for B==E besides weak antilocalization
phenomena near zero magnetic fields (B< 0:4 T), which
is a fingerprint of the Adler-Bell-Jackiw anomaly. These
results are consistent with the Weyl-metal picture and a
spectroscopic experiment would be highly desirable to
directly measure the peculiar electronic structure of the
Weyl metallic state.
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