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Providing a full theoretical description of the single-particle spectral function observed for high-

temperature superconductors in the normal state is an important goal, yet unrealized. Here, we present a

phenomenological model approaching towards this goal. The model results from implementing key

phenomenological improvement in the so-called extremely correlated Fermi-liquid model. The model

successfully describes the dichotomy of the spectral function as functions of momentum and energy and

fits data for different materials (Bi2Sr2CaCu2O8þ� and La2�xSrxCuO4), with an identical set of intrinsic

parameters. The current analysis goes well beyond the prevalent analysis of the spectral function as a

function of momentum alone.
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In the sudden approximation theory [1] of the angle-
resolved photoelectron spectroscopy (ARPES), photoelec-

tron counts Ið ~k; !Þ recorded as a function of momentum ( ~k)
and energy (!) [2] are given by

Ið ~k; !Þ ¼ jMifj2fð!ÞAð ~k; !Þ; (1)

where Mif is the dipole matrix element for the photoexci-

tation, fð!Þ is the Fermi-Dirac function, and Að ~k; !Þ ¼
ð1=�ÞImGð ~k; !Þ is the single-particle spectral function,
where G is the single-particle Green’s function [3].

As the single-particle Green’s function in the normal
state is believed to contain vital information on the nature
of excitations relevant to the high-temperature (‘‘high-Tc’’)
superconductivity, its characterization by ARPES has been
a major line of research. Various approaches towards get-
ting at this information have been attempted: a phenome-
nological approach based on a simple scaling behavior of
the electron self-energy [5], an asymptotic solution to the
Gutzwiller projected ground state of the t-J Hamiltonian
[6], application of a non-Fermi-liquid theory [7] for low
dimensions, and a newly proposed solution to the t-J
Hamiltonian [4].

For an experimental ‘‘cut,’’ i.e., an experimental data set

taken along a line of ~k values, Ið ~k; !Þ is a function defined
on a two-dimensional domain. This multidimensionality

makes analyzing Ið ~k; !Þ a nontrivial task. While attempts

[8] have been made to analyze the Ið ~k; !Þ image [e.g., see
Fig. 3(a)] as a whole, the current understanding of line

shapes in terms of Að ~k; !Þ depends on the analysis of
selected energy distribution curves [EDCs; the EDC is a

function of !, defined as Ið ~k ¼ ~k0; !Þ] [4–6,9] or selected
momentum distribution curves [MDCs; the MDC is a

function of ~k, defined as Ið ~k; ! ¼ !0Þ, with ~k varying
along a line] [9,10].

Currently, there is no consensus on a theoretical model
that can suitably describe ARPES data of high-Tc materi-
als. A model that can describe the normal-state data, both
EDCs and MDCs, obtained in different experimental con-
ditions and for different materials, with the same intrinsic
parameters would be a good candidate. Here, we propose a
new such phenomenological model.
The new model arises as the result of critically improv-

ing the so-called extremely correlated Fermi-liquid
(ECFL) model [4], which was shown to be quite successful
in describing EDCs. The new model now makes it possible
to describe other key aspects of the data as well: MDC fits
are excellent, and the values of jMifj2 behave reasonably.
Moreover, it improves EDC fits. The result is a phenome-
nological model in which the apparent dichotomy between
the EDCs and the MDCs [7,11] is described excellently
by two independent aspects of a single theoretical concept,
the caparison factor [4,12].
A phenomenological study of this kind seems to be

helpful, also in light of the ongoing development of the
ECFL theory [13,14]. The theoretical formalism of the
ECFL initiated by Shastry [12,13] is quite involved, and,
while a numerical solution [14] valid for hole doping
x * 0:3 is now available, more time seems necessary to
extend these promising results to near-optimal doping.
Thus, a phenomenological model based on the main fea-
ture of the theory, the caparison factor, may be of consid-
erable value at this stage. In this theory [13], the caparison
factor is an !-dependent adaptive spectral weight that
encodes two key pieces of physics: the Gutzwiller projec-
tion that reduces the spectral weight at high ! and the
invariance of the Fermi surface volume at low !.
In our previous work [4], it has been demonstrated that

the normal-state EDCs for optimally doped cuprates for
two different compounds, or for different experimental
conditions (low photon energy or high photon energy),
can be explained using an ECFL line shape model, all
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with one set of intrinsic parameters. We will refer to that
model as the ‘‘simplified ECFL (sECFL)’’ model [15], in
relation to the fuller theory in development [13,14]. While
the EDC analysis used there has strong merits [4,16], a
natural subsequent question is whether MDCs can be
described as well, along the same line of theory.

In the sECFL model [4], Gð ~k; !Þ is given by

Gð ~k; !Þ ¼ Qn � n2

4
�ð!Þ
�0

!� "ð ~kÞ ��ð!Þ ; (2)

where Qn ¼ 1� ðn=2Þ ¼ ð1þ xÞ=2 is the total spectral

weight per ~k in the t-J model, and n (x) is the number of
electrons (holes) per unit cell [17]. �ð!Þ is an ordinary
Fermi-liquid self-energy, determined by two intrinsic pa-
rameters ZFL (quasiparticle weight) and !0 (cutoff energy
scale) and one extrinsic parameter � (impurity scattering
contribution to Im�). �0 is an energy scale parameter,
determined completely by n, ZFL, and !0, through the
global particle sum rule. In the Supplemental Materials
(SM) [18], a short summary of Ref. [4] is provided for
readers’ benefit.

The above Green’s function can be rewritten as

Gð ~k; !Þ ¼ Qn

�n

þ Cnð ~k; !Þ
!� "ð ~kÞ ��ð!Þ ; (3)

C nð ~k; !Þ ¼ Qn

�
1�!� "ð ~kÞ

�n

�
; (4)

where Cnð ~k; !Þ is the ‘‘caparison factor’’ [4,12] and the
energy scale �0 is absorbed into �n � 4Qn�0=n

2. As all
symbols in Eq. (3) other than �ð!Þ are real,

Að ~k; !Þ ¼ Cnð ~k; !ÞAFLð ~k; !Þ; (5)

where AFL is the spectral function for the ‘‘auxiliary Fermi-
liquid’’ Green’s function [19] AFL ¼ ð1=�ÞImGFL ¼
ð1=�ÞIm½!� "ð ~kÞ ��ð!Þ��1.

The caparison function Cn, summarized concisely in
Eq. (4), played the central role in the sECFL model. In
this work, we show how its role can be extended even
further by a key phenomenological modification: inspired

by data, we treat the ! dependence and the ~k dependence
of Cn as separately adjustable. We shall refer to the modi-
fied model as the ‘‘phenomenological EFCL (pECFL).’’
We distinguish between theMD pECFL and theMI pECFL
based on whether Cn remains momentum dependent (MD)
or is made momentum independent (MI).

With this much introduction to our models, we shall first
discuss line shape fits before discussing the models. As for
free fit parameters controlling the line shape, all models
have � and !0, like the sECFL [4] (cf. the SM, Sec. A). In

addition, the group velocity vF0 of "ð ~kÞ required small
adjustment for different models to give correct peak

positions (SM, Sec. B). Then, only for the MD pECFL,
there are two more free fit parameters (see later).
Figure 1 shows ARPES line shape fits for the normal-

state data for the optimally doped Bi2Sr2CaCu2O8þ�

(Bi2212) sample, taken along the ‘‘nodal direction’’
ð0; 0Þ ! ð�;�Þ. Figure 1(a) shows fits essentially identical
[20] with those of Ref. [4]. The fit quality of the MI pECFL
is clearly the best, while that of the MD pECFL is notice-
ably poorer, despite more fit parameters.
Figure 2 shows ARPES line shape fits for MDCs of the

same data set. Figure 2(a) shows clearly that the sECFL has
difficulty fitting the data even at ! ¼ 0 (Fermi energy).
Figure 2(b) shows a quite improved fit by the MD pECFL
model. However, the MI pECFL fit shown in Fig. 2(c) is
definitively the best.
That the MI pECFL model is able to describe EDCs and

MDCs so accurately seems to confirm the basic ECFL idea
[4]. In these fits, no extra component (e.g., extrinsic back-
ground intensity) was added to the theory that we described
thus far [21]. All of the conclusions above also apply to the
fits of the 91 K data [4], as shown in detail in the SM,
Sec. C.
From the above work, it is clear that the MI pECFL

model emerges as the best model for the Bi2212 data. This

model is surprisingly simple: the "ð ~kÞ term in Eq. (4) is
simply dropped. The motivation for doing so is purely
empirical: the MDCs of Bi2212 data are known to be quite
symmetric and Lorentzian-like. The effect of this simple
modification is surprisingly very good in many ways. MDC
fits improve dramatically, as expected [Fig. 2(c)], but EDC

fits improve also [Fig. 1(c)], especially for ~k far away from
~kF [Fig. 3(b)]. Furthermore, the overall scale parameters

(a) (b) (c)

FIG. 1 (color online). Line shape fits of EDCs for Bi2212 (x ¼
0:15) using (a) sECFL, (b) MD pECFL, and (c) MI pECFL. Data
and model parameters are identical with those in Ref. [4] (ZFL ¼
0:33, !0 ¼ 0:5 eV, �0 ¼ 0:12 eV), except for slightly different

values for � (0:17 ! 0:18 eV) and "ð ~kÞ (see the text).
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for MDC fits [Fig. 3(c)] and EDC fits [Fig. 3(d)] are now
quite reasonable, as discussed in the caption. These facts
lend an overwhelming support to the MI pECFL model.

The MI pECFL model accomplishes these feats without
any additional fit parameter, in comparison to the sECFL
model. Instead, the success arises crucially from the sepa-

rate treatment of the ! dependence and the ~k dependence,
or independence, of the caparison factor, important for
describing EDCs and MDCs, respectively.

In contrast to the pECFL models, it is clear that the
sECFLmodel cannot describe MDCs at all. Using identical
fit parameters as for EDCs [see the dashed line marked
‘‘� ¼ 0:18 eV’’ in Fig. 2(a)], we get very poor fit quality,
which improves, dramatically but insufficiently, by relax-
ing the � parameter to 0.13 eV [Fig. 2(a)]. In this new light,
the sECFL model, so successful in the previous work [4],
must be viewed as getting only one of the two things
correct—the ! dependence of the caparison factor, but

not its ~k dependence—and its valid regime remains [4]

confined to EDCs in the narrow range of ~k around ~kF
[Figs. 1(a) and 3(a); see also the SM, Sec. E].

How about the MD pECFL model? From our discussion
up to this point, it does not seem worth much considera-
tion. But, note that neither the sECFL nor the MI pECFL

guarantees the fundamental requirement Cnð ~k; !Þ � 0
[Fig. 3(e)]. In the MD pECFL model, we take

�n ¼ �n0

�
1þ exp

�
!� "ð ~kÞ � a1�n0

a2�n0

��
; (6)

where �n0 � 4Qn�0=n
2 ¼ 0:38 eV is the value of �n in

the sECFL model. In the MD pECFL, Cnð ~k; !Þ � 0 is

guaranteed for any ~k and ! values, if a1 � 1þ a2ð1�
loga2Þ. Physically, a1 and a2 play the role of controlling
the MDC asymmetry [Fig. 3(f)] and were determined as
a2 ¼ 2� 1 and a1 ¼ �1� 1. See the SM, Sec. F,
for details.

(a) (b) (c)

FIG. 2 (color online). Line shape fits of MDCs for Bi2212
(x ¼ 0:15) using (a) sECFL, (b) MD pECFL, and (c) MI pECFL.
Fit parameters are identical with those used for Fig. 1, except for
the reduced � value (0.13 eV) for (a).

(a)

(c)

(b)

(d)

(e) (f)

FIG. 3 (color online). (a) The ARPES data for Bi2212, fit in
previous figures. Rectangle E (M) marks the range of data fit in

Fig. 1 (Fig. 2). Circle symbols mark "ð ~kÞ values used in the
pECFL fits. The ARPES count increases from green, blue (half
maximum), and white to red (maximum). (b) EDC and its fits,

for the ~k value marked by the vertical line V in (a). (c), (d) The
overall intensity scale parameters determined from (c) the MDC
fit and (d) the EDC fit, which correspond to jMj2fð!Þ and jMj2,
respectively, by Eq. (1). Shaded areas marks the fit ranges used
in Figs. 1 and 2. As the energy dependence of jMj2 is expected to
be weak for this small range of !, we expect the points shown in
(c) to approximately follow fð!Þ (solid line). The MI pECFL
does this the best. We also expect points in (d) to show only a
modest variation in this k range [8,31]. Here also, the MI pECFL
performs the best; in contrast, the sECFL shows an unnatural

steep increase. (e) Cnð ~k; !Þ for various models used. For the MD
pECFL, a1 ¼ �1 and a2 ¼ 2 are used throughout this Letter.

For the sECFL, maxðCnð ~k; !Þ; 0Þ is used [4]. (f) The evolution of
the MDC asymmetry, controlled by a1 within the MD pECFL
(a2 ¼ 2). The MDC by the sECFL is the most asymmetric, while
that by the MI pECFL is completely symmetric.
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Accordingly, Cn for the MD pECFL stays clearly above
zero and is smooth [Fig. 3(e)]. Cn for the MI pECFL is, by

definition, that for the sECFL at "ð ~kÞ ¼ 0, as marked by
label 1 in Fig. 3(e). However, we find that it can also be

taken to be that for the MD pECFL at "ð ~kÞ ¼ 0, as indi-
cated by label 2 in Fig. 3(e), since fit results are very
comparable between these two choices.

For Bi2212, the MD pECFL is significantly better than
the sECFL, but significantly worse than the MI pECFL,
despite having two more fit parameters (cf. the SM, Sec. F).

However, the situation changes when we fit data of
La2�xSrxCuO4 (LSCO) [22], showing strong MDC asym-
metry [Figs. 4(b)–4(e)]. Here, identical fit parameter values
as those for Bi2212 are used, except for � ¼ 0:12 eV and
vF0 (SM, Sec. B). Figure 4(a) shows an EDC fit, good by
all models, just as for Bi2212. However, the MDC fit is a
different matter. Notably, MDCs show significant asym-
metry for �! * 0:07 eV [Fig. 4(b)], and that asymmetry
can be described properly only by the MD pECFL model,
as illustrated clearly in fits shown in Figs. 4(b)–4(e), and as
discussed further in Sec. D of the SM.

We see that the original sECFL model must be modified
greatly (Bi2212) or somewhat (LSCO) to describe MDCs.
We argue that these phenomenological modifications
require physics beyond the t-J Hamiltonian, since the
sECFL model is derived [12] from the t-J Hamiltonian,
and another well-known model [16] based on the t-J
Hamiltonian also implies too asymmetric MDCs. More
specifically, the physics of the (next-nearest-neighbor hop-
ping) t0 term seems a good candidate: the well-known fact
that jt0=tj is significantly smaller for LSCO [23,24] goes
well with our result that the MD pECFL model is more
similar to the sECFL model. The t0 term is correlated with
the superconducting transition temperature [24], imparting
importance to our current proposal. We recently found [25]
that an anomalous ARPES feature is explained by the
pECFL, but not the sECFL, and has similarity to a scanning
tunneling spectroscopy feature correlated with supercon-
ductivity, adding more credence to our argument here.
Last, the fact that the caparison factor for the infinite-

dimensional ECFL becomes ~k independent [26,27] seems
to go along with our result, within the crude analogy
between adding a large t0 term and increasing channels
for t hopping. In sum, the variation between the sECFL and
the pECFL, while consistent with the universal
!-dependent caparison factor of the ECFL theory, also
points out the importance of the nonuniversal modification
of the caparison factor within the ECFL theory.
In this Letter, we proposed a phenomenological

ARPES line shape model, based on the ECFL theory
[12,13]. The essential feature of our model remains the
caparison factor [4,12,14], which is capable of describing
both anomalous EDC line shapes [4,16], universal for
high-Tc cuprates, and apparently more conventional MDC
line shapes [9,10].While our model is not the first to fit both
EDCs and MDCs [9] of high-Tc cuprates, its demonstrated
fidelity (including a qualitative description of jMifj2) and
range of applicability are now unprecedented. Also unpre-
cedented is the notable fact that our model requires a Dyson
self-energy [28], whose form is drastically different from
that assumed by the prevalent, but incomplete, MDC-only
analysis [29,30]: to our knowledge, ours is the only
~k-dependent [28] Dyson self-energy that has fit cuprate
MDCs. Thus, extending the current analysis towider ranges
of momentum, doping, and temperature and studying its
implications on other properties such as the resistivity [14]
seems to make a great research topic for the immediate
future.
We gratefully acknowledge B. S. Shastry and D. Hansen

for stimulating discussions and feedback to the manuscript
and G.D. Gu for Bi2212 samples used for the original
data [4]. We thank T. Yoshida for sharing the digital
version of the LSCO data. The work by G.-H.G. was
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(a)

(b)

(c)

(d)

(e)

FIG. 4 (color online). Fits to the data of optimally doped (n ¼
0:85; x ¼ 0:15) LSCO [22], taken along the nodal direction.
(a) EDC fits at k ¼ kF. (b)–(e) MDCs for �! * 0:07 eV are
significantly asymmetric, described the best by the MD pECFL.
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