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(Received 7 October 2013; published 9 December 2013)

Relativistic and QED corrections are calculated for a hyperfine splitting of the 2S1=2 ground state in
6;7Li atoms with a numerically exact account for electronic correlations. The resulting theoretical

predictions achieve such a precision level that, by comparison with experimental values, they enable

determination of the nuclear properties. In particular, the obtained results show that the 7Li nucleus,

having a charge radius smaller than 6Li, has about a 40% larger Zemach radius. Together with known

differences in the electric quadrupole and magnetic dipole moments, this calls for a deeper understanding

of the Li nuclear structure.
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Introduction.—Hyperfine splitting (hfs) of atomic
energy levels results from the interaction between the
magnetic moment of the atomic nucleus and that of the
electrons. It has been measured very accurately for many
elements, including light ones: H [1], D [2], 3He [3],
Li, and Beþ [4]. Since the hyperfine interaction is singular
at small distances, it strongly depends on the nucleus.
For example, the nuclear structure contribution in H is
�33 ppm, in D it is 138 ppm, and in 3Heþ it is
�212 ppm [5], while experimental precision is orders of
magnitude larger. This means that theoretical predictions
for hydrogenic systems can only be as accurate as the
uncertainty in the nuclear structure contribution. The situ-
ation is different for many electron systems where the
limiting factor is the electron correlation, which is difficult
to accurately account for using relativistic formalism based
on the multielectron Dirac Hamiltonian [6,7].

In this work we overcame this problem by using the
nonrelativistic QED approach, where relativistic and QED
effects are treated perturbatively. We were able to accu-
rately account for electron correlations by using explicitly
correlated basis sets. We derived an exact formula for
Oð�2Þ corrections, and higher orders were treated approxi-
mately with the help of hydrogenic results. This enabled us
to achieve a few ppm accuracy and clearly identify the
nuclear structure contribution. Surprisingly, the obtained
results show significantly different magnetic moment
distributions in 6Li and 7Li. This calls for a deeper under-
standing of the Li nuclear structure, or signals the existence
of some unknown spin-dependent short-range force
between charged hadrons and the lepton.

Effective Hamiltonian.—To calculate the hyperfine split-
ting in the Li atom we use the nonrelativistic QED
approach, which consistently accounts for relativistic and
QED effects. In this approach all corrections are treated
perturbatively in powers of the fine structure constant and
are expressed in terms of an effective Hamiltonian. For
example, hyperfine splitting in the S state is given by the
Fermi contact interaction

HA
hfs ¼

2gNZ�

3mM

X
a

~I � ~�a��
3ðraÞ: (1)

The relation of gN with the magnetic moment � of the
nucleus of charge Z is

gN ¼ M

Zmp

�

�N

1

I
; (2)

where�N is the nuclear magneton and I is the nuclear spin.
Numerical values of the nuclear g factor for Li are
presented in Table I. In general, the leading relativistic

correction Hð4Þ
hfs of order m�4, which depends on nuclear

spin I, is

Hð4Þ
hfs ¼

g

2
HA

hfs þHB
hfs þHC

hfs; (3)
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m3

X
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X
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riar
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�
; (5)

where " ¼ gNm
2=ð2MÞ, and M, m are masses of the

nucleus and the electron, respectively. HB
hfs and HC

hfs in

principle involve the electron g factor, which is set here
to g ¼ 2. This is because their expectation values vanish in
any S state and they contribute only in the second order of
perturbation theory (see below). Higher-order relativistic
and QED corrections to hyperfine splitting are also
expressed in terms of an effective Hamiltonian, so the
expansion in � takes the form

Ehfs ¼ hHð4Þ
hfsi þ hHð5Þ

hfsi þ hHð6Þ
hfsi

þ 2

�
Hð4Þ 1

ðE�HÞ0 H
ð4Þ
hfs

�
þ hHð6Þ

radi þ hHð7Þ
hfsi; (6)

where the prime denotes exclusion of the reference state
from the resolvent.
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Hð4Þ is a Breit Hamiltonian in the nonrecoil limit,

Hð4Þ ¼ HA þHB þHC; (7)

HA ¼ X
a

�
� p4

a

8m3
þ Z��

2m2
�3ðraÞ

�

þ X
a;b;a>b

�
��

m2
�3ðrabÞ � �
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pi
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�
�ij
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ab
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�
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b

�
;

(8)

HB ¼ X
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4m2
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þ X
a;b;a�b
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4m2

~rab
r3ab
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ab
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and ~rab ¼ ~ra � ~rb, rab ¼ j~rabj.
Hð5Þ

hfs is a correction of order m�5. It is a Dirac-delta-like

interaction with the coefficient obtained from the two-
photon forward scattering amplitude. It has the same
form as in hydrogen and depends on the nuclear structure.
At the limit of a point spin 1=2 nucleus, it is

Hð5Þ
hfs ¼ �HA

hfs

3Z�

�

m

mN

ln

�
mN

m

�
� Hð5Þ

rec; (11)

a small nuclear recoil correction. For a finite-size nucleus

Hð5Þ
hfs does not vanish at the nonrecoil limit. If we use a

simple and inaccurate picture of the nucleus as a rigid ball
described by the electric �EðrÞ and the magnetic �MðrÞ
form factors, then Hð5Þ

hfs takes the form

Hð5Þ
hfs ¼ �HA

hfs2Z�mrZ; (12)

where

rZ ¼
Z

d3r d3r0�EðrÞ�Mðr0Þj ~r� ~r0j; (13)

and the whole correction is encoded into the Zemach radius
rZ. The more accurate formula goes beyond the elastic
form factor treatment. It was first found by Low and then
much later reanalyzed and applied in calculations for such
nuclei as D, T, and 3He by Friar and Payne in Ref. [5],

Hð5Þ
hfs ¼

��2

2

X
a

�3ðraÞ
Z

d3r d3r0hf�ð ~rÞ; ~�a � ð~r� ~r0Þ

� ~jð ~r0Þgj~r� ~r0ji
¼ �HA

hfs2Z�m~rZ; (14)

where � and ~j are the nuclear charge and current density
operators, respectively, and the last equation is the defini-
tion of ~rZ. Both formulas include the same feature: linear
dependence on the average distance of the magnetic
moment density from the charge density. We did not
attempt to perform nuclear structure calculations to obtain

Hð5Þ
hfs, because they are beyond our range. Instead, we used

an experimental hyperfine splitting value to obtain the
nuclear structure contribution and we expressed it in terms
of an effective Zemach radius ~rZ according to Eq. (14).
This gives us clues about the structure of Li nuclei.

The next term Hð6Þ
hfs includes nuclear spin-dependent

operators that contribute at order m�6. This term is not
well known in the literature. In hydrogenic systems it leads
to the so-called Breit correction. For two-electron atoms it
was presented in the work on 3He hyperfine splitting [11],
while for three-electron atoms the operators were derived
in Ref. [12]. We rederived this result herein to obtain a
slightly simplified but equivalent form. This was done as
follows: the magnetic field coming from the nuclear mag-
netic moment is

e ~Að~rÞ ¼ e

4�
~�� ~r

r3
¼ �Z�

gN
2M

~I � ~r

r3
: (15)

Consider the part �HBP of the Breit-Pauli Hamiltonian of
the atomic system, which includes the coupling of the
electron spin to the magnetic field

TABLE I. Numerical values for the leading orders of hfs in the Li atom. The results from
Ref. [8] are multiplied by 2.

7Li 6Li

gN [9] 5.039 274 8(26) 1.635 884 1(12)

�=M� 105 7.820 202 745 2(50) 9.121 675 279(24)

Að4;0Þ 5.811 937 88(5)

Reference [8] 5.811 937 888(74)

Að4;1Þ 16.738 971(4)

Reference [10] 16.8(1.8)

Að4Þ 5.810 628 86(5) 5.810 411 01(5)

Að5Þ
rec �0:008 207 110 �0:009 416 884
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where ~� ¼ ~p� e ~A. The leading interaction Hð4Þ
hfs between

the nuclear ~I and electron spins ~�a is obtained from the
nonrelativistic terms

Hð4Þ
hfs ¼ �X

a

e

m
~pa � ~Að~raÞ � e

2m
~�a � ~Bð ~raÞ; (17)

with the magnetic field coming from the nucleus, Eq. (15).

The relativistic correction Hð6Þ
hfs is similarly obtained from

�HBP,

Hð6Þ
hfs ¼ "

X
a
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�
2
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��
: (18)

However, the resulting operators are singular, and in the
next section we briefly describe the cancellation of these
singularities with those in the second-order matrix
elements.

Hð6Þ
rad in Eq. (6) is a QED radiative correction [13,14]

Hð6Þ
rad ¼ HA

hfs�ðZ�Þ
�
ln2� 5

2

�
; (19)

which is similar to that in hydrogen. The last term Eð7Þ
hfs of

order m�7 is calculated approximately using the hydro-
genic value for the one-loop correction from Ref. [15] and
the two-loop correction from Ref. [14],

Hð7Þ
hfs ¼ HA

hfs

�
�

�
ðZ�Þ2

�
� 8

3
ln2ðZ�Þ

þ a21 lnðZ�Þ þ a20

�
þ �2

�
ðZ�Þb10

�
; (20)

where a21ð2SÞ ¼ �1:1675, a20ð2SÞ ¼ 11:3522, and
b10 ¼ 0:771 652.

We will express the hyperfine splitting in terms of the
hyperfine constant A, defined as

Ehfs ¼ ~I � ~JA; (21)

where ~J is the total electronic angular momentum, which,
for the ground state of Li, is equal to 1=2. If we use the

notation Hhfs ¼ ~I � ~Hhfs, then

A ¼ 1

JðJ þ 1Þ h
~J � ~Hhfsi: (22)

The expansion of A in � takes the form

A ¼ "

�
g

2
�4Að4Þ þ X1

n¼5

�nAðnÞ
�
: (23)

All of the results of the numerical calculations are given

here in terms of dimensionless coefficients AðnÞ.
Numerical results.—The matrix elements of all the

operators are calculated with the nonrelativistic wave
function � expressed in terms of antisymmetrized func-
tions �i,

� ¼ XN
i¼1

�iA½�ið ~r1; ~r2; ~r3Þðj "#"i � j #""iÞ�; (24)

where �i are real coefficients and A denotes antisymmet-
rization. In this work we used for � the explicitly corre-
lated Hylleraas [8], Slater [16], and Gaussian [17] basis
functions for various types of matrix elements. For conve-

nience, in this section we will use atomic units, so all AðiÞ
are dimensionless.

The leading Að4Þ coefficient using Eq. (1),

Að4Þ ¼ 1

JðJ þ 1Þ
4�Z

3
h ~J � ~�a�

3ðraÞi; (25)

is calculated by using the expansion in the ratio of the
reduced electron mass � to the nuclear mass M,

Að4Þ ¼ Að4;0Þ � �

M
Að4;1Þ: (26)

The next-to-leading correction Að5Þ
rec and all others are

obtained in the leading order in the mass ratio, so that

Að5Þ
rec ¼ �Að4Þ 3Z

�

m
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ln

�
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m

�
: (27)

The most difficult part of the calculation is Að6Þ, which is
expressed in terms of the following matrix elements:

Að6Þ ¼ Að6Þ
AN þ Að6Þ

B þ Að6Þ
C þ Að6Þ

R ; (28)
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B ¼ 2

JðJ þ 1Þ
�
Z
X
a

~J � ~ra � ~pa

r3a

1

ðE�HÞ0 H
B

�
; (30)

Að6Þ
C ¼ 2

JðJþ1Þ
�
�Z

2

X
a

Ji�j
a

r3a

�
�ij�3

riar
j
a

r2a

�
1

ðE�HÞ0H
C

�
;

(31)

and
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Að6Þ
R ¼ Að4Þ

�
ln2� 5

2

�
: (32)

Að6Þ
AN consists of two terms, which are separately divergent

at small ra. We obtained a finite expression by transform-
ing operators in the second-order matrix element by

HA � H0A þ 1

4

X
a

�
Z

ra
; E�H

�
; (33)

4��3ðraÞ � 4�½�3ðraÞ�0 �
�
2

ra
; E�H

�
: (34)

All singular terms are moved to the first-order matrix
elements, which, when combined, form a well-defined

and finite expression. The calculation of Að6Þ is the main
result of this work. It agrees well with the former calcu-
lations in Refs. [6,10] (see Table II) but is much more

accurate. The higher-order term Að7Þ is obtained directly
from Eqs. (20) and (22). Numerical results for all of the
expansion coefficients are presented in Table II. Final
results are combined together in Table III. The uncertainty
of final theoretical predictions for a point nucleus are
estimated as 25% of the a20 coefficient in Eq. (20), which
is calculated approximately using the hydrogenic result.
The achieved accuracy is sufficient to obtain precise values
of the nuclear structure effect. This is expressed in terms of
~rZ, the effective Zemach radius, the value of which should
not be very different from the charge radius rE. While our
results are in agreement with those of Yerokhin [6] for the
point nucleus, the nuclear structure contribution compares
strangely to the nuclear calculations performed in Ref. [6].
Namely, they agree well for 7Li and strongly disagree for
6Li, for which we do not have conclusive explanation.

Conclusions.—Until now, only H, D, and 3He nuclei
have been studied to a high degree of accuracy, due to
the development in hfs theory of one-electron systems [14].
Here we extend the high-accuracy theoretical predictions
to three-electron atoms (ions). Namely, we have calculated
hyperfine splitting in 6;7Li with an accuracy of a few ppm,
which allows the determination of nuclear structure effects,
expressed in terms of the effective Zemach radius ~rZ.

The obtained result for ~rZð7LiÞ is about 40% larger than
~rZð6LiÞ, in spite of the fact that the charge radius is smaller
in 7Li; see Table III. This indicates significant differences
in the magnetic distribution of 7Li and 6Li nuclei, which
shall be confirmed by the nuclear theory. This may also
indicate that the standard treatment of finite nuclear size
effects in the evaluation of the hyperfine splitting through
elastic form factors fails in some cases.
In summary, we have shown that through purely atomic

calculations and experiments one can gain valuable
information on the structure of the atomic nucleus, in
particular, the Zemach radius. Similar calculations can be
performed for 11Bewhere one expects a significant neutron
halo [18].
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