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Assuming that the particle with mass�126 GeV discovered at LHC is the standard model Higgs boson,

we find that the stability of the electroweak (EW) vacuum strongly depends on new physics interaction at

the Planck scale MP, despite of the fact that they are higher-dimensional interactions, apparently

suppressed by inverse powers of MP. In particular, for the present experimental values of the top and

Higgs boson masses, if � is the lifetime of the EW vacuum, new physics can turn � from � � TU to

� � TU, where TU is the age of the Universe, thus, weakening the conclusions of the so called

metastability scenario.
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Introduction.—When the particle with mass�126 GeV,
discovered at LHC [1,2], is identified with the standard
model (SM) Higgs boson, serious and challenging ques-
tions arise, among them, the vacuum stability issue. The
Higgs effective potential Veffð�Þ bends down for values of
� larger than the electroweak (EW) minimum, an insta-
bility due to top loop corrections. By requiring stability,
lower bounds on the Higgs boson mass MH were found
[3–9].

A variation on this picture is the so-called metastability
scenario [4,10–12]. For � much larger than v (location of
the EW minimum), Veffð�Þ develops a new minimum at

�ð2Þ
min. WhenMH andMt are such that VeffðvÞ< Veffð�ð2Þ

minÞ,
the EW minimum is stable; otherwise it is a false vacuum

that should decay into the true vacuum (at �ð2Þ
min) in a finite

amount of time. Depending on the values of MH and Mt,
the lifetime � of the EW vacuum can be larger or smaller
than the age of the Universe TU. For � > TU, we may well
live in the metastable EW minimum. This is the meta-
stability scenario.

The aim of this Letter is to study the influence of
new physics interactions (at the Planck scale) on �.
Tree level and quantum fluctuation contributions are taken
into account. In this Letter, however, we limit ourselves
to considering the quantum corrections from the Higgs
sector only. This is sufficient to illustrate our main
point. The complete analysis is left for a forthcoming
paper.

Let us begin with Fig. 1, where we repeat the usual
analysis [10–12] and draw the phase diagram in theMH �
Mt plane. The latter is divided into three different sectors:

an absolute stability region [VeffðvÞ< Veffð�ð2Þ
minÞ], a meta-

stability region (� > TU), and an instability region (� <
TU). The dashed line separates the stability and the meta-
stability sectors and is obtained for MH and Mt such that

VeffðvÞ ¼ Veffð�ð2Þ
minÞ. The dashed-dotted line separates the

metastability and the instability regions and is obtained for
MH and Mt such that � ¼ TU. For Mt � 173:1 GeV and

MH � 126 GeV, the SM lies within the metastability
region. It is then concluded that the present experimental
values of MH and Mt allow for a standard model valid all
the way up to the Planck scale.
Let Veffð�Þ be normalized so as to vanish at� ¼ v. At a

much larger value� ¼ �inst, Veffð�instÞ vanishes again (for
MH � 126 GeV, Mt � 173:1 GeV, this happens for
�inst � 1010 GeV). For �>�inst, the potential becomes
negative, later developing a new minimum.
It is assumed that the actual behavior of Veffð�Þ for �

beyond�inst has no impact on �. More precisely, it is stated
that even if Veffð�Þ at � ¼ MP is still negative (and the
new minimum forms at a scale much larger than MP), new
physics interactions around the Planck scale must stabilize
the potential (eventually bringing the new minimum
around MP), but � does not depend on the detailed form
of Veffð�Þ beyond �inst [10].
In this respect, it is worth it to note that for MH �

126 GeV and Mt � 173:1 GeV, not only the effective
potential at the Planck scale is negative, but it also con-
tinues to go down beyond MP. The new minimum is

formed at �ð2Þ
min � 1031 GeV (see Fig. 3).
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FIG. 1. In this picture, we repeat the analysis of [10–12],
which is done in the absence of new interactions at the Planck
scale. The MH �Mt plane is divided in three sectors: absolute
stability, metastability, and instability regions. The dot indicates
MH � 126 GeV and Mt � 173:1 GeV.

PRL 111, 241801 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

13 DECEMBER 2013

0031-9007=13=111(24)=241801(5) 241801-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.241801


Note also that the instability of the effective potential
occurs for very large values of �, (�inst � 1010 GeV). In
this range, Veffð�Þ is well approximated by keeping only
the quartic term [6]. Accordingly, following [13,14], the
tunneling time � is computed by considering the bounce
solutions to the Euclidean equation of motion for the
potential Vð�Þ ¼ ð�=4Þ�4 with negative �, a good ap-
proximation in this range.

Lifetime of the EW vacuum.—In order to study the
impact of new physics interactions at the Planck scale,
we add two higher dimension operators �6 and �8 to the
SM Higgs potential

Vð�Þ ¼ �

4
�4 þ �6

6

�6

M2
P

þ �8

8

�8

M4
P

: (1)

Naturally, we can also consider higher dimensional opera-
tors. However, the examples we are going to study (with
different choices of �6 and �8) are sufficient for illustrating
some interesting cases we can face when new physics
interactions at the Planck scale are considered.

The influence of �6 and �8 on the RG flow of the quartic
coupling �ð�Þ, for values of� belowMP, is negligible (see
Fig. 2). The RG functions for the SM parameters at the
two-loop level (with the corresponding boundary condi-
tions) can be found, for instance, in [11,15]. Further
(slight) improvement is obtained by considering three-
loop contributions [11,12,16].

Let us now consider two different representative cases.
For �6ðMPÞ ¼ �2 and �8ðMPÞ ¼ 2:1, the potential is
given by the dashed line of Fig. 3. Because of the large
range of scales involved, the plot is done in a double
logarithmic scale. As �6 is negative, when � approaches
MP, Vnew

eff ð�Þ, which is the renormalization group

improved effective potential in the presence of �6 and
�8, bends down much more steeply than Veffð�Þ and forms

a new minimum at about�ð2Þ
min �MP. This is clear from the

zoom around the Planck scale in panel (b) of Fig. 3.

The second case we consider is when �6 and �8 are both
positive. For �6ðMPÞ ¼ 1 and �8ðMPÞ ¼ 0:5, the potential
is given by the dotted-dashed line of Fig. 3. As �6 is
positive, when � approaches MP the potential Vnew

eff ð�Þ
lies above (rather than below) Veffð�Þ.
In both cases, the potential is stabilized at the Planck

scale by new physics terms. However, it is commonly
believed that, although such a stabilization has to take
place, the presence of new physics interactions has no
impact on the EW vacuum lifetime [10]. We shall see
that this is not generically true. When Vnew

eff ð�Þ lies above
Veffð�Þ, which in our example is realized with �6ðMPÞ> 0
and �8ðMPÞ> 0, � is almost insensitive to the presence of
these new terms. On the contrary, when Vnew

eff ð�Þ lies below
Veffð�Þ, which in our example is realized with �6ðMPÞ< 0
and �8ðMPÞ> 0, � strongly depends on new physics.
The tunneling time � is given by [10,13,14],

1

�
¼ T3

U

S½�b�2
4�2

��������det
0½�@2 þ V 00ð�bÞ�

det½�@2 þ V 00ðvÞ�
���������1=2

e�S½�b�; (2)

where �bðrÞ is the Oð4Þ bounce solution to the Euclidean
equation of motion (r2 ¼ x�x�), S½�b� the action for the

bounce, ½�@2 þ V00ð�bÞ� the fluctuation operator around
the bounce (V00 is the second derivative of V with respect to
�). The prime in the det0 means that, in the computation of
the determinant, the zero modes are excluded and
S½�b�2=4�2 comes from the translational zero modes.
Let us compute � for the potential of Eq. (1) with

�6ðMPÞ ¼ �2 and �8ðMPÞ ¼ 2:1.
When Veffð�Þ (the usual SM Higgs potential without

new interaction terms) is computed within the MS scheme
and the renormalization scale � is chosen to coincide with
the inverse of the bounce size Rmax that maximizes the
tunneling probability [10], we have � ¼ 2R�1

maxe
��E ¼

1:32� 1017 GeV (�E is the Euler gamma) and the cou-
pling constant �ð�Þ is �ð�Þ ’ �0:014.
For our potential, we find that, up to the scale � ’

0:780MP, it is very well approximated by an upside
down quartic parabola, Vnew

eff ð�Þ ¼ ð�eff=4Þ�4, with �eff ¼
�þ 2

3�6ð�2=M2
PÞ þ 1

2�8ð�4=M4
PÞ ’ �0:437. For �>�,

Vnew
eff ð�Þ bends down very steeply [see Fig. 3(b)], eventu-

ally creating a new minimum very close to MP : �ð2Þ
min ¼

0:979MP. Therefore, for values of � larger than (but close
to) �, � * �, it can be linearized and we get Vð�Þ ¼
½ð�eff=4Þ�4 � ð�eff�

3=�Þð�� �Þ�, where

� ¼ ��eff�
3

�
��3 þ �6

�5

M2
P

þ �8

�7

M4
P

��1
: (3)

Interestingly, in order to compute �, this is all that we
need to know [17]. Moreover, the parameter � plays an
essential role in determining when new physics interac-
tions influence �.
The Euclidean equation of motion admits the following

bounce solution:
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FIG. 2. ForMH � 126 GeV andMt � 173:1 GeV, the running
of �ð�Þ as determined by SM interactions only (solid line) and in
the presence of �6 and �8. Dashed-dotted line: �6ðMPÞ ¼ 1 and
�8ðMPÞ ¼ 0:5. Dashed line: �6ðMPÞ ¼ �2 and �8ðMPÞ ¼ 2:1.
Clearly, the tree lines coincide for values of � below the Planck
scale.
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�bðrÞ ¼
8><
>:
2�� �2

ffiffiffiffiffiffiffiffi
j�eff j
8

q
r2þ �R2

�R
0< r < �rffiffiffiffiffiffiffiffi

8
j�eff j

q
�R

r2þ �R2 r > �r;
(4)

where

�r2 ¼ 8�

�eff�
2
ð1þ �Þ; (5a)

�R2 ¼ 8

j�effj
�2

�2
: (5b)

From Eq. (5a) we see that the solution (4) exists only for
�1< �< 0. �R is the size of the bounce (4) and the action
at �b is

S½�b� ¼ ½1� ð�þ 1Þ4� 8�2

3j�eff j : (6)

There are also other bounce solutions

�ð2Þ
b ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
2

j�effj

s
2R

r2 þ R2
; (7)

where R the size of these bounces, can take any value in

the range
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið8=j�effjÞ

p ð1=�Þ<R<1. A numerical analysis
(presented in detail in a forthcoming paper) shows that these
latter solutions are related to the approximation that we are
considering for Vð�Þ. Nevertheless, for j�j � MP (that in
turn means for very large values of R), configurations of the
kind given in Eq. (7), with �eff replaced by �, are good
approximate solutions of the (Euclidean) equation of mo-
tion, and, in principle, should be taken into account in the
computation of �. Their action is degenerate with R and is

S ¼ 8�2

3j�j : (8)

However, even if for a moment we limit ourselves to the
tree level contribution only, from Eqs. (2), (6), and (8) we
see that for those values of � such that the solution (4)
exists (� 1<�< 0), the contribution to the tunneling
probability coming from the bounces (7) (with �eff

replaced by �) is exponentially suppressed with respect
to the contribution of (4). For �, �6ðMPÞ, �8ðMPÞ, and �
given above, we have � ’ �0:963.
Let us now compute the fluctuation determinant in

Eq. (2) for the bounce (4) and for �6ðMPÞ ¼ �2 and
�8ðMPÞ ¼ 2:1, which is the case of interest for us.
Because of radial symmetry, V00ð�bÞ in ½�@2 þ V 00ð�bÞ�

only depends on r. Following [18], the logarithm of the
fluctuation determinant is obtained (see below for some
specifications) as

log

�
det0½�@2 þ V00ð�bÞ�

detð�@2Þ
�
1=2 ¼ 1

2

X1
l¼0

ðlþ 1Þ2 ln�l; (9)

where �l ¼ lim
r!1�lðrÞ; (10)

and each �lðrÞ is a solution of the differential equation

�00
l ðrÞ þ

ð2lþ d� 1Þ
r

�0
lðrÞ � V00½�bðrÞ��lðrÞ ¼ 0; (11)

with boundary conditions �lð0Þ ¼ 1 and �0
lð0Þ ¼ 0. [�00

l ðrÞ
is the second derivative of �lðrÞ with respect to r,. . .].
Equation (9) is ill defined in three respects. The eigen-

value related to l ¼ 0 is a negative mode (�0 < 0), while
the l ¼ 1 modes correspond to the four translational zero
modes. We exclude the l ¼ 0 and l ¼ 1 modes from the
above sum. They can be separately treated in a standard
way [18,19]. Finally, the sum in Eq. (9) is divergent. This is
the usual UV divergence, and we know how to take care of
it through renormalization [19].
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FIG. 3. (a) The effective potential Veffð�Þ (solid line) for MH � 126 GeV and Mt � 173:1 GeV. Note that the new minimum forms

at �ð2Þ
min � 1031 GeV. For the same values of MH and Mt, V

new
eff ð�Þ for �6 ¼ �2 and �8 ¼ 2:1 (dashed line); Vnew

eff ð�Þ for �6 ¼ 1 and

�8 ¼ 0:5 (dashed-dotted line). In order to include such a vast range of scales, a log-log plot has been considered. (b) Zoom of the panel
(a) figure near the Planck scale. Veffð�Þ, Vnew

eff ð�Þ, and � are normalized to Planck units (in this range no log-log plot is needed).

Vnew
eff ð�Þ for �6 < 0 bends down steeply and forms a new minimum at �ð2Þ

min ¼ 0:979MP. With �6 > 0, Vnew
eff ð�Þ falls down less steeply

than Veffð�Þ, and in the picture, we cannot resolve the minimum which forms at � ¼ 0:119MP.
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Let us now consider Eq. (11) for l > 1. We can easily
solve this equation numerically for each value of l (for
increasing l, the �l’s rapidly converge to one). Following

[19], the MS renormalized sum in Eq. (9) is given by�
1

2

X1
l>1

ðlþ 1Þ2 ln�l

�
r
¼ 1

2

X1
l>1

ðlþ 1Þ2 ln�l � 1

2

X1
l¼0

ðlþ 1Þ2

�
�R1

0 drrV 00

2ðlþ 1Þ �
R1
0 drr3ðV 00Þ2
8ðlþ 1Þ3

�

� 1

8

Z 1

0
drr3ðV 00Þ2

�
ln

�
�r

2

�

þ �E þ 1

�
; (12)

where � is the renormalization scale. We then get�
1

2

X1
l>1

ðlþ 1Þ2 ln�l

�
r
¼ �2:49� 5:27 ln

�
1:48�

MP

�
: (13)

This result is obtained by truncating the sum to a value
of l where it shows saturation (standard renormalization
procedure). Strictly speaking, the ‘‘angular momentum’’
cutoff L in this sum is given by L ¼ �RMP, which, from
Eq. (5b) is L� 5. However, the series in Eq. (12) con-
verges very fast. Even truncating it to l ¼ 5 we get a less
than 3% difference with the result of Eq. (13). The standard
renormalization procedure is then well justified.

For l ¼ 0, �0 has to be replaced with its absolute value
[19]. Solving Eq. (11), we find that its contribution to the
sum in Eq. (9) is 1

2 lnj�0j ¼ �0:806.

Finally, the contribution of the zero modes (l ¼ 1) is
also obtained in a standard manner [19]. The solution of
Eq. (11) for l ¼ 1 vanishes in the r ! 1 limit: �1 ¼ 0.
Actually, �1 has to be replaced with �0

1, defined as

�0
1 ¼ lim

k!0

�k
1

k2
; (14)

where �k
1 is obtained by solving Eq. (11) with V00ð�bÞ

replaced by V00ð�bÞ þ k2. Note that �0
1 has the dimension

of a length square and is given in terms of �R, the size of the
bounce (4). The zero modes contribution to the sum in
Eq. (9) finally is 1

2 4 ln�
0
1 ¼ 2lnð0:0896 �R2Þ.

For the purposes of comparing our results [from
Vnew
eff ð�Þ] with those obtained with Veffð�Þ, it is useful to

choose the same renormalization scale as before, � ¼
1:32� 1017 GeV. Then, collecting the different results,
from Eq. (2) we find

� ¼ 5:45� 10�212TU; (15)

a ridiculously small fraction of a second.
This result is at odds with what is shown in Fig. 1, where

forMH � 126 GeV andMt � 173:1 GeV, the EW vacuum
lies inside the metastability region, close to the stability
line and shows that the phase diagram of Fig. 1 has to be
reconsidered. Actually, when the EW vacuum lifetime for

these values of MH and Mt is computed in the absence of
new physics interactions, we have

� ¼ 1:49� 10714TU: (16)

Accordingly, the EW vacuum would be an extremely long-
lived metastable state. This is why it is often stated that, for
the present experimental values of MH and Mt, the SM is
an effective theory that is valid all the way up to the Planck
scale.
Equation (15) shows that this is not generically true. As

a result of the presence of new physics interactions, the EW
vacuummay turn from a very long-lived metastable state to
a highly unstable one. As we have already seen, in fact,
when Vnew

eff ð�Þ lies above Veffð�Þ, � is not dramatically

affected by new physics. On the contrary, when Vnew
eff ð�Þ

lies below Veffð�Þ, the UV completion of the standard
model has a very strong impact on �, turning it from
� � TU to � � TU.
Conclusions and outlook.—In this Letter, we show that

the lifetime � of the EW vacuum strongly depends on new
physics. The metastability scenario (which is based on the
assumption that � does not depend on new physics) and the
whole phase structure of Fig. 1 have to be entirely
reconsidered.
Clearly, when the quantum fluctuations from other sec-

tors of the SM are taken into account, the specific value of
� in Eq. (15) is modified. However, this does not change the
core result of the present analysis, namely the huge influ-
ence of new physics on �.
A very important outcome of our result is that it poses

constraints on possible candidates to the UV completion of
the SM. In this respect, we note also that a similar analysis
can be done when the new physics scale lies below (even
much below) the Planck scale.
Finally, we note that the considerations developed in this

Letter should be relevant for related scenarios, Higgs po-
tential with two degenerate minima [20] and Higgs driven
inflation scenarios [21,22]. In all of these cases, in fact, the
physical scale relevant to the involved mechanism is dan-
gerously close to the Planck scale and we expect high
sensitivity to new physics interactions.
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