
Bootstrapping Conformal Field Theories with the Extremal Functional Method

Sheer El-Showk
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The existence of a positive linear functional acting on the space of (differences between) conformal

blocks has been shown to rule out regions in the parameter space of conformal field theories (CFTs). We

argue that at the boundary of the allowed region the extremal functional contains, in principle, enough

information to determine the dimensions and operator product expansion (OPE) coefficients of an infinite

number of operators appearing in the correlator under analysis. Based on this idea we develop the extremal

functional method (EFM), a numerical procedure for deriving the spectrum and OPE coefficients of CFTs

lying on the boundary (of solution space). We test the EFM by using it to rederive the low lying spectrum

and OPE coefficients of the two-dimensional Ising model based solely on the dimension of a single scalar

quasiprimary—no Virasoro algebra required. Our work serves as a benchmark for applications to more

interesting, less known CFTs in the near future.
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Introduction and preliminaries.—It is well known [1–8]
that the global conformal symmetry group inD dimensions
SOðDþ 1; 1Þ implies that the four-point function of four
identical scalars with conformal dimension �� takes the
form

h�ðx1Þ�ðx2Þ�ðx3Þ�ðx4Þi ¼ gðu; vÞ
x2��

12 x2��

34

; (1)

with xij � xi � xj, and where gðu; vÞ is a function of the

conformally invariant cross ratios

u ¼ x212x
2
34

x213x
2
24

; v ¼ x214x
2
23

x213x
2
24

: (2)

The existence of the operator product expansion (OPE) of
the theory [9] implies that the function gðu; vÞ can be
written in two inequivalent ways, corresponding to expand-
ing the correlator around x1 ’ x2, x3 ’ x4 or x1 ’ x3, x2 ’
x4 (i.e., the direct and crossed channels, respectively). For
instance, in the direct channel we have

gðu; vÞ ¼ 1þX
�;L

�2
O�;L

G�;Lðu; vÞ: (3)

The sum is over symmetric traceless even spin, L, primar-
ies of the conformal group labeled by their conformal
dimensions �. The restriction to even spin follows
from the Bose symmetry of the scalars [10]. The contribu-
tion from each primary and its descendants is given by the
function G�;Lðu; vÞ, known as a conformal block [11–15].

The accompanying numbers �O�;L
are the OPE coefficients

appearing in the three-point function h��O�;Li. The 1 in

the sum above is the contribution of the conformal block of

the identity which always appears in the four-point func-
tion of identical scalars.
Equivalence of the expansion in the direct and crossed

channels implies the identity
X
�;L

�2
OF

ð�Þ
�;Lðu; vÞ ¼ 1; (4)

with

Fð�Þ
�;Lðu; vÞ �

�
v��G�;Lðu; vÞ � u��G�;Lðv; uÞ

u�� � v��

�
:

Solving this relation is nontrivial: For instance, the con-
tribution of a single conformal block in one channel must
necessarily be matched by an infinite sum of conformal
blocks in the cross channel. The idea of using relation (4),
together with analogous ones for other correlation func-
tions, to determine the spectrum and OPE coefficients of a
conformal field theory (CFT) is known as the conformal
bootstrap [16,17], and has been recently revived in the
works [10,18–27]. A related bootstrap technique, using a
somewhat different methodology, was recently introduced
in [28].
The crucial handle into attacking the problem is to

notice the positivity of the coefficients �2
O�;L

(following

from unitarity), which leads us to consider all possible

positive linear combinations of the Fð�Þ
�;L. This problem is

simplified by thinking of each Fð�Þ
�;L as a vector in an infinite

dimensional space with components given by Taylor coef-
ficients (expanded around some judiciously chosen point
as described in the next section). For more details on this
method see, e.g., [25]. The set of all vectors form a semi-
polyhedral cone, so we can rephrase the problem of solving
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the bootstrap constraints (4) as the question, under which

assumptions does the cone generated by the Fð�Þ
�;L vectors

contain the constant function 1, the ‘‘identity vector’’?
By imposing various constraints on the spectrum, the

identity may lie inside or outside the cone, but something
very interesting happens when the identity vector lies

exactly on the face of the polytope formed by the Fð�Þ
�;L.

At precisely this point there is generically a single solution
to crossing symmetry, since by convexity we are only
allowed to use the vectors which make up the vertices of
the face through which the identity vector is cutting. In the
language of linear functionals, there exists a hyperplane
containing the face of the cone along which the identity
vector lies. The zeros of this unique functional are pre-
cisely the vectors which define the face through which the
identity vector is passing. This uniqueness provides a
recipe for constructing solutions to crossing symmetry,
the extremal functional method (EFM): (i) Find the
extremal linear functional �. (ii) Compute the vectors

Fð�Þ
�;L which are zeros of �. (iii) Solve for the linear combi-

nation of Fð�Þ
�;L’s which gives the identity vector. The coef-

ficients are the square of the OPE coefficients. In this
Letter, we test this method by reconstructing the spectrum
of the two-dimensional Ising model to high accuracy. We
hope to apply it in the future to more interesting cases, such
as the three-dimensional Ising model.

Warm-up: Two derivatives.—In order to obtain a
tractable problem, we discretize the infinite set of con-
straints in (4). We do this by first setting u ¼ z�z, v ¼
ð1� zÞð1� �zÞ, followed by an expansion around z ¼
�z ¼ 1=2. More concretely we set z ¼ 1

2 ð1þ aþ ffiffiffi
b

p Þ,
�z ¼ 1

2 ð1þ a� ffiffiffi
b

p Þ and expand in a and b to some finite

order. After discretization the constraints (3) can be
thought of as demanding that the constant vector 1 lies in

the cone spanned by positive linear combinations of the

vectors Fð�Þ
�;L.

The simplest nontrivial example corresponds to consid-
ering the constant term and linear terms in a and b in the
expansion, giving us three component vectors. That is,
Eq. (4) now becomes the vector equation

X
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�2
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4 ;

1
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1
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¼
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0

0

0
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1
CCA: (5)

We are free to redefine the coefficients �2
O�;L

to �̂2
O�;L

¼
�2
O�;L

Fð�Þ
�;Lð14 ; 14Þ, and so the first equation becomes the nor-

malization condition
X
�;L

�̂2
O�;L

¼ 1: (6)

The rescaling is possible because the sign of Fð�Þ
�;Lð14 ; 14Þ is

always positive in the region of interest. This reduces the
dimension of the vector space by one so that we are now
looking at a slice of the cone corresponding to the inter-
section with the plane transverse to (1,0,0). This yields a
two-dimensional convex polytope, namely the convex hull
of all possible vectors (@aF=F, @bF=F) and we are inter-
ested in determining the circumstances under which the
origin is contained in it. Figure 1 shows the polytope in
(@aF=F, @bF=F) space corresponding to

�� LþD� 2; ðL� 2Þ; ����; ðL¼ 0Þ;
where �� > 0 is an arbitrary gap we impose (and vary) in
the scalar spectrum.
This is done for d ¼ 2 and �� ¼ 0:125, as we wish to

compare with the two-dimensional Ising model.
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FIG. 1 (color online). Convex hull formed by the Fð�Þ
�;L vectors. In blue and purple the spin-0 and spin-2 vectors, respectively. The

lines start at the unitarity bounds (� ¼ 0, 2, respectively, on the left and � increases to the right). Higher spin curves lie outside the
plot. The red curve shows part of the boundary of the polytope, the other being the spin-0 line in blue. A solution to crossing symmetry
exists whenever the origin (in blue) is contained inside the polytope. In the critical case (b) a solution must involve the vectors marked
with black dots. The dashed line is the linear functional separating the origin from the polytope, and it overlaps with a polytope face in
the critical case.
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Represented are the scalar and spin-2 lines, corresponding
to the sets of vectors with spins 0 and 2, and arbitrary �.
Increasing the conformal dimension shifts the vectors to
the right-hand side of the plot, tracing the lines shown there
in blue and purple (i.e., each point along the colored lines
corresponds to a given � with L ¼ 0, 2, respectively).
There are also other lines corresponding to higher spin
fields lying outside the range of the plot above.
Altogether, the convex hull of all these vectors forms an
unbounded polytope, one of whose faces runs from the tips
of the scalar and spin-2 lines, another being the scalar line
in blue.

If we allow all possible spin-0 fields consistent with
unitary (i.e., �� ¼ 0), it is clear that the origin lies well
inside the polytope [Fig. 1(a)]. This means that within our
approximation, we cannot rule out CFTs with this unre-
stricted spectrum. As we increase the gap in the scalar
spectrum (i.e., allow only �> �� for increasing values of
��), the boundary of the polytope shifts, following the
scalar line up to a critical point ��

�. At this critical point
the face which runs from the tip of the scalar line to the tip
of the spin-2 line cuts across the origin [Fig. 1(b)]. Finally,
increasing �� further in Fig. 1(c) we see that the origin is
not contained in the polytope and hence there is no solution
to the crossing constraints. Accordingly, it is possible to
find a linear functional separating the identity vector from
the polytope, as shown by the dashed line in the same
figure.

At the critical point in Fig. 1(b) the solution is unique
(generically). By convexity it is clear that the solution to
crossing symmetry must include the critical scalar of di-
mension��

�, and the field at the tip of the spin-2 line, which
is of course none other than the stress tensor, and no other
operator. So, at this point we have found the two unique
operators which must be in the spectrum within this two-
derivative approximation. Numerically one finds that the
critical scalar has dimension ��

� ’ 1:03.
To compute the OPE coefficients we simply solve (5) for

�O��;0
and �O2;2

(with all other � vanishing), yielding a

system of two equations for two variables, whose solution is

�� ¼ 0:125; �� ’ 1:03; ���� ’ 0:24; c ’ 0:45;

(7)

with c the central charge, related to the ��T OPE coeffi-
cient ���T by c ¼ �2

�=�
2
��T . The two-dimensional Ising

model satisfies

�� ¼ 0:125; �� ¼ 1 ���� ¼ 0:25; c ¼ 0:5;

(8)

and so even with this very basic two derivative approxima-
tion we already get something quite reasonable.

We can rephrase the problem in terms of linear func-
tionals by demanding the existence of such a functional
which is positive when acting on all vectors except the
identity, where it is constrained to be negative. If we can

find such a functional then we have proven that there is no
solution to crossing symmetry. In the extremal case the
functional will be positive on all vectors except a minimal
set required to span a codimension one hyperplane. It is
precisely these vectors that must appear in the solution to
crossing symmetry.
To see this in our simple example recall that in the

polytope picture the plane becomes a line [i.e., the inter-
section of the plane with the plane transverse to (1,0,0)]. In
Fig. 1(b) we see that this extremal line overlaps with the
face spanned by the critical scalar and the stress tensor.
These two vectors are therefore zeros of the original linear
functional, and the functional should be positive when
acting on all other vectors.
Applying EFM to theD ¼ 2 Ising model.—Motivated by

these results, we add more derivatives of the F functions
making the vectors larger, and thereby enlarging the di-
mension of our search space. In this way we are capturing
more and more information about the shape of the full
cone, and therefore about the spectrum. A natural (and it
turns out good) way to parametrize this approach is the
number N of components in our vectors or simply the
dimension of the search space.
To study the D ¼ 2 Ising model we set �� ¼ 0:125 and

look for an extremal functional by decreasing the value of
�� to just above the value where it first starts being possible
to solve crossing symmetry (i.e., the largest possible gap in
the scalar spectrum where a solution exists). This choice of
�� is an input (borrowed from known exact results) rather
than an output of our method; given the dimension of the
external scalar the EFM computes all other operators
appearing in its OPE. Ignorance of �� in, e.g., the D¼3
Ising model is the main reason our method does not
immediately generalize to solving that theory. On the other
hand, by making additional assumptions, such as the mini-
mization of the central charge as a function of�� (see, e.g.,
[29]), we could indeed determine even this scaling dimen-
sion to quite high precision (and then use it as an input in
the rest of the procedure outlined below). This approach to
fixing�� (for theD ¼ 3 Ising model) will be the subject of
a future study [30].
Consider starting with small N and gradually increasing

it up to a maximum of 60 components. As the number of
derivatives is increased, the boundary of the allowed region
shrinks towards lower values of ��

�. We are guaranteed to
improve our bound as N increases since, for a given N, we
can always use the functional atN � 1 by simply adding an
extra zero component. We find empirically that indeed the
value of ��

� systematically decreases towards ��
� ¼ 1. For

the maximum value of N we considered here we obtain the
correct value �� ¼ 1 to about six decimal places.
In Fig. 2 we show a plot of the extremal functional

dotted into the conformal block vectors of spin 2. Notice
the logarithmic scale. The sharp downward spikes corre-
spond to the zeros of the functional, so for instance from
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this spin-2 plot we read off operators with dimensions
’ 2; 6; 7:9; . . . . Similar plots can be made for other spins.
We will compare these spectra with those of the two-
dimensional Ising model shortly but first we need to
address an important question: which operators should
we trust to be in the true spectrum? Indeed, much as ��

converges to the correct value only for a high enough
number of derivatives, the same is true for the other op-
erators. We therefore need a criterion for deciding whether
a given operator has stabilized or not.

The idea is to estimate the error from the variation of the
operator dimensions as N increases. As an example we
show the spectrum in the scalar channel in Fig. 3. The
pattern is that as N increases, the functional develops new
zeros and shifts the positions of old ones until they even-
tually stabilize. This leads us to the following:

(i) Criterion 1: An operator has converged and should be
trusted to appear in the actual correlator if ��=�< 1%. In
this note �� � �N¼60 ��N¼58.

The next step is to compute the OPE coefficients. We
select some subset of the total components and restrict
ourselves to this lower dimensional vector space. By
restricting to only these components we can then find a

set of OPE coefficients which is optimal, in the sense of
minimizing the value of the crossing symmetry constraints,

OPE coeffs ¼ minf�ig
� X
Vi: ��V¼0

�iVi � 1
�
: (9)

We minimize over the value of the OPE coefficients �i,
where i labels vectors which are zeros of the extremal
functional � � Vi ¼ 0. We take all zeros of the functional,
not only those deemed to have stabilized. Moreover, all the
vectors appearing above have been projected onto a lower
dimensional subspace of the original set of derivatives (so
they have less than N components).
The solution is sensitive to the choice of components

used, but there is an independent metric for determining
the quality of a set of OPE coefficients, namely the value of
the minimum above, and it is this metric we use to select
how many, and which components we keep from the
original vector. In practice we have found that good results
for the OPE coefficients can be obtained by minimizing the
above taking into account only the first Zþ 1 components
of the Z zero vectors V.
At the end of this procedure we have a putative spec-

trum, comprising a set of operators—zeros of the extremal
functional—and their respective OPE coefficients. We can
do this for any N, and from this determine an approximate
error:
(ii) Criterion 2: An OPE coefficient �O has converged,

and should be trusted to be approximately correct if
��O=�O < 15%. In this note ��O � j�ON¼60

� �ON¼58
j.

Notice that it only makes sense to talk about OPE
convergence if there is an associated operator, and so
criterion 2 can only be applied on operators satisfying
criterion 1. The large disparity in our choice of cutoffs is
mostly due to the fact that we find that operator dimensions
converge more quickly than OPE coefficients, and so hav-
ing a small cutoff for OPE coefficients would be too
restrictive.
We would like to add that while our criteria involve an

arbitrary choice of cutoff (1% and 15%), the methodology
itself provides a natural error estimate, the variances ��=�
and ��=� that bound the error when compared with the
exact results.
Results.—In Table I we present some of the operators

and respective OPE coefficients obtained with our
methods, side by side with those corresponding to the
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FIG. 2 (color online). The extremal functional acting on the
spin-2 vectors.
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FIG. 3. Evolution of the zeros of the extremal functional in the
scalar channel.

TABLE I. Low-lying two-dimensional Ising spectrum.

Exact EFM

(�, L) OPE (�, L) OPE

(1,0) 0.5 (1.0000025,0) 0.4999997

(4,0) 0.015625 (4.00030,0) 0.0156241

(2,2) 0.1767767 (2,2) 0.1767772

(6,2) 0.00262039 (5.99787,2) 0.00261753

(4,4) 0.0209531 (4,4) 0.0209626
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two-dimensional Ising model. The agreement is impres-
sive, especially for the low-lying operators. Our method
yields, however, many more operators. Following is a
summary of our total results: (i) The correct value for the
dimension and OPE coefficient of the operator � to 6 digits
accuracy. (ii). The correct central charge to within
0.0005%. (iii) 7, 10, 15, and 19 operators with OPE coef-
ficients correct within 0.01%, 0.1%, 1%, and 10%, respec-
tively. Our highest operator has dimension 15, spin 14 with
30% error on the OPE coefficient. The estimated errors
compare well with the actual ones.
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