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1Université Paris-Sud-Paris 11, CNRS, LPTMS, 91405 Orsay Cedex, France
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We study the statistics of near-extreme events of Brownian motion (BM) on the time interval ½0; t�. We

focus on the density of states near the maximum, �ðr; tÞ, which is the amount of time spent by the process

at a distance r from the maximum. We develop a path integral approach to study functionals of the

maximum of BM, which allows us to study the full probability density function of �ðr; tÞ and obtain an

explicit expression for the moments h½�ðr; tÞ�ki for arbitrary integer k. We also study near extremes of

constrained BM, like the Brownian bridge. Finally we also present numerical simulations to check our

analytical results.
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Introduction.—Since its first developments in the early
1930s, extreme value statistics (EVS) have found an
increasing number of applications. Besides the fields of
engineering [1], natural sciences [2], or finance [3,4],
where EVS have been applied for a long time, extreme
value questions play also now a key role in physics [5–7].

The standard question of EVS concerns the maximum
Xmax (or the minimum Xmin) among a collection of N
random variables X1; . . . ; XN . However the fluctuations of
this global quantity Xmax give only a partial information
about the extreme events in this sequence of random
variables. For instance, if Xi’s represent the energy levels
of a disordered system, the low but finite temperature
physics of this system is instead determined by the statis-
tical properties of the states with an energy close to the
ground state, i.e., ‘‘near minimal’’ states [7–10]. Near-
extreme events are naturally related to the subject of order
statistics [11], where one considers not only the first maxi-
mum Xmax but also the second or third one, and more
generally the kth maximum. Order statistics recently arose
in various problems of statistical physics to characterize
the crowding of near extremes [12–16].

Besides their relevance in physics, near extremes are
also important for various applied sciences. This is for
instance the case in natural sciences or in finance where
extreme events like earthquakes or financial crashes are
usually preceded and followed by foreshocks and
aftershocks [17–19]. This is also a natural question in
climatology where a maximal (or minimal) temperature
is usually accompanied by a heat (or cold) wave, which
can have drastic consequences [20,21]. Similar questions
arise in the context of sporting events, like marathon
packs [22].

In all these situations a natural and useful quantity to
characterize the crowding of near extremes is the density of
states (DOS) near the maximum, �ðr; tÞ [20]. For a con-
tinuous stochastic process xð�Þ in the time interval ½0; t�,
the DOS is defined as

�ðr; tÞ ¼
Z t

0
�½xmax � xð�Þ � r�d�; (1)

where xmax ¼ max0���txð�Þ. Hence, �ðr; tÞdr denotes the
amount of time spent by xð�Þ at a distance within the
interval [r, rþ dr] from xmax (see Fig. 1). Hence �ðr; tÞ
is similar to the so-called ‘‘local time’’ [23] Tlocðr; tÞ ¼R
t
0 �½xð�Þ � r�d�, with the major difference that in Eq. (1)

the distances are measured from xmax, which is itself a
random variable. Note that, by definition,

R1
0 �ðr; tÞdr ¼ t.

Clearly, �ðr; tÞ is a random variable as it fluctuates from
one realization of fxð�Þg0���t to another one: an important
question is then to characterize its fluctuations.
This question has attracted much attention during the

last 15 years, both in statistics [24,25], often motivated by
problems related to insurance risks, and more recently in
statistical physics [20], and in econophysics [26]. Despite
important literature on this subject, the only available

FIG. 1 (color online). One realization of the stochastic process
xð�Þ on the time interval [0, t], with a width WðtÞ ¼
max0���txð�Þ �min0���txð�Þ. xð�Þ spends a time �ðr; tÞdr at
a distance within [r, rþ dr] (the green stripe) from the maxi-
mum xmax, with �ðr; tÞ being the DOS (1). Inset: The average
DOS for BM h�ðr; tÞi ¼ ffiffi

t
p

��ðr= ffiffi
t

p Þ where the exact scaling
function ��ðxÞ in Eq. (2) is compared to simulations.

PRL 111, 240601 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

13 DECEMBER 2013

0031-9007=13=111(24)=240601(5) 240601-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.240601


results concern independent and identically distributed
random variables, where xð�1Þ and xð�2Þ for �1 � �2 are
uncorrelated (or weakly correlated [20]). Yet, many situ-
ations where near extremes are important, like disordered
systems or earthquakes statistics, involve strongly corre-
lated variables. Recent studies in physics, like the fluctua-
tions at the tip of the branching Brownian motion [12,13],
or order statistics of time series displaying 1=f� correla-
tions [14], including Brownian motion (BM) [15,16], have
also unveiled the importance of near-extreme statistics for
strongly correlated variables. Hence, any exact result on
near extremes of strongly correlated variables would be of
wide interest.

In this Letter, we make a first step in that direction
and focus on the case where xð�Þ is a one-dimensional
Brownian motion. It starts from xð0Þ ¼ 0, and evolves
via _xð�Þ ¼ �ð�Þ, �ð�Þ being Gaussian white noise,
h�ð�Þ�ð�0Þi ¼ �ð�� �0Þ. In this case, the time series
fxð�Þg0���t is clearly a set of strongly correlated variables
as hxð�1Þxð�2Þi ¼ minð�1; �2Þ [and hxð�1Þi ¼ hxð�2Þi ¼ 0].
For this simple yet nontrivial strongly correlated process,
we are able to provide a complete analytical characteriza-
tion of the statistics of �ðr; tÞ. Let us begin by summarizing
our main results.

We first focus on the average DOS and show that

h�ðr; tÞi ¼ t1=2 ��ðr=t1=2Þ, such that
R1
0 h�ðr; tÞidr ¼ t, with

��ðxÞ ¼ 8½hðxÞ � hð2xÞ�;

hðxÞ ¼ e�x2=2ffiffiffiffiffiffiffi
2�

p � x

2
erfc

�
xffiffiffi
2

p
�
;

(2)

where erfcðxÞ ¼ ð2= ffiffiffiffi
�

p ÞR1
x e�y2dy. In the inset of Fig. 1

we show a plot of ��ðxÞ. It behaves linearly, ��ðxÞ � 4x

for x ! 0, vanishes as ��ðxÞ / x�2e�x2=2 for x ! 1, and
exhibits a maximum for xtyp ¼ 0:514 54 . . . , slightly

smaller than the average value xave ¼
ffiffiffiffiffiffiffiffiffi
2=�

p ¼
0:797 88 . . . . The fact that ��ðxÞ does not vanish too rapidly
as x ! 0 indicates that, on average, there is no gap between
xmax and the rest of the crowd; hence ‘‘xmax is not lonely at
the top.’’ The mean DOS for BM (2) is thus quite different
from the independent and identically distributed case [20];
in that case, depending on whether the tail of the parent
distribution of the Xi’s decays slower than, faster than, or
as a pure exponential, the limiting mean DOS converges to
three different limiting forms, which are clearly different
from Eq. (2).

The DOS is a random variable (1) and its average is not
sufficient to characterize its statistics. We thus study its full
probability density function (PDF) Ptð�; rÞ, as a function
of �, for different values of the parameter r. This PDF is a
particular case of a functional of the maximum of the BM.
In this Letter, we establish a general framework, using path
integral, to study such functionals of xmax and obtain
Ptð�; rÞ exactly. We show that it has an unusual form
with a peak / �ð�Þ at � ¼ 0, in addition to a nontrivial

continuous background density ptð�; rÞ for � > 0. We
show that the amplitude of this peak / �ð�Þ has a proba-
bilistic interpretation, so that Ptð�; rÞ reads

Ptð�; rÞ ¼ FWðr; tÞ�ð�Þ þ ptð�; rÞ; (3)

where FWðr; tÞ ¼ Prob:½WðtÞ � r�, given in Eq. (13), is the
probability that the width WðtÞ ¼ max0���txð�Þ �
min0���txð�Þ is smaller than r. This can be understood
because if WðtÞ is smaller than r, the amount of time spent
by the process at a distance within [r, rþ dr] from the
maximum is 0 (see Fig. 1), yielding the delta peak

at � ¼ 0. On the other hand, in Eq. (3), ptð�; rÞ ¼
t�ð1=2Þp1ð�=

ffiffi
t

p
; r=

ffiffi
t

p Þ is a regular function of �, for r > 0
(see Fig. 2). We obtain an explicit expression of its Laplace
transform (LT) with respect to t given below [Eq. (12)].
From it we extract the asymptotic behaviors

p1ð�; rÞ ¼
8<
:
p1ð0; rÞ þOð�Þ; � ! 0

�2ffiffiffiffiffi
2�

p e�ð�þ2rÞ2=2½1þOð��1Þ�; � ! 1 ; (4)

where p1ð0; rÞ is a nontrivial function of r, given in
Eq. (14). For BM, which is continuous both in space and
time, the probabilistic interpretation of p1ð�; rÞ exactly at
� ¼ 0, p1ð0; rÞ, is a bit ill defined. Indeed, roughly speak-
ing, p1ð0; rÞ is the probability that the trajectory visits the
points located at a distance within [r, rþ dr] from xmax

only ‘‘a few times.’’ But we know that, if a site is visited
once by BM, it will be visited again infinitely many times
right after. As shown below, it is however possible to give a
probabilistic interpretation to p1ð0; rÞ by considering BM
as a limit of a discrete lattice random walk (RW). We also

0.21.2
2.5

1

2

0.5

1

FIG. 2 (color online). Plot of P1ð�; rÞ as a function of � for
different values of r. The solid lines for � ¼ 0 represent the �ð�Þ
peak, / �ð�Þ in Eq. (12). The dotted lines correspond to our
exact analytical results for the background density p1ð�; rÞ in
Eq. (12)—where the inverse LT with respect to s has been
performed numerically (in green for r ¼ 2:5, purple for r ¼
1:2, and blue for r ¼ 0:2 as indicated on the r axis)—while the
red dots indicate the results of simulations. On the z ¼ 0 plane,
we have plotted the exact mean DOS in Eq. (2).
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obtain an exact expression for the moments of arbitrary
order k 2 N, �kðr; tÞ ¼ h½�ðr; tÞ�ki given in Eq. (11).
Finally, we show that our method can be extended to study
the DOS of constrained BMs, like the Brownian bridge
(BB), i.e., BM starting and ending at the origin.

Free BM.—To study analytically the PDF of �ðr; tÞ, we
compute its LT, he���ðr;tÞi. This is a particular functional of
xmax, of the form hexp½��

R
t
0 d�Vðxmax � xð�ÞÞ�i. In our

case (1) VðyÞ ¼ �ðy� rÞ but the path integral method that
we develop below holds actually for any arbitrary function
VðyÞ. Denoting by tmax the time at which the maximum
is reached, the two intervals [0, tmax] and [tmax, t]
are statistically independent (as BM is Markovian), and

the PDF of tmax is given by the arcsine law PðtmaxÞ ¼
1=½� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tmaxðt� tmaxÞ
p � [23]. The process yð�Þ¼xmax�xð�Þ

is obviously a BM which stays positive on [0, t]. By
reversing the time arrow in the interval [0, tmax] and taking
tmax as the new origin of time, we see that yð�Þ is built from
two independent Brownian meanders (BMes): one of dura-
tion tmax and the other (independent) one of duration
t� tmax (see the Supplemental Material [27]). We recall
that a BMe of duration T is a BM, starting at the origin,
staying positive on the time interval [0, T] and ending
anywhere on the positive axis at time T. Therefore one has

he��
R

t

0
d�V½xmax�xð�Þ�i ¼

Z t

0
dtmax’ðtmaxÞ’ðt� tmaxÞ; (5)

’ð�Þ ¼ 1ffiffiffiffiffiffiffi
��

p he��
R

�

0
duV½yðuÞ�iþ; (6)

where h� � �iþ denotes an average over the trajectories of a
BMe yð�Þ. In Eq. (6) the prefactor 1=

ffiffiffiffiffiffiffi
��

p
comes from the

PDF of tmax. This functional of the BMe ’ð�Þ can then be
computed using path-integral techniques [28], which needs
to be suitably adapted to our case. Indeed, for a BMe,
which is continuous both in space and time, it is well
known that one cannot impose simultaneously yð0Þ ¼ 0
and yð0þÞ> 0. This can be circumvented [29,30] by intro-
ducing a cutoff " > 0 such that yð0Þ ¼ " and then taking
eventually the limit " ! 0 of the following ratio defining
’ð�Þ in Eq. (6):

he��
R

�

0
duV½yðuÞ�iþ ¼ lim

"!0

R1
0 hyFje�H��j"idyFR1
0 hyFje�H0�j"idyF ; (7)

H� ¼ � 1

2

d2

dx2
þ �VðxÞ þ VwallðxÞ; (8)

where VwallðxÞ is a hard-wall potential, VwallðxÞ ¼ 0 for
x � 0, and VwallðxÞ ¼ þ1 for x < 0, which guarantees
that the walker stays positive, as it should for a BMe.
Note that in Eq. (7), yF denotes the final point of the
BMe, which can be anywhere on the positive axis. The
convolution structure of the expression in Eq. (5) suggests
to compute its LT with respect to t. Using the above result

in Eq. (7) applied to VðxÞ ¼ �ðx� rÞ one finds, after some
manipulations (see the Supplemental Material [27])

Z 1

0
dte�sthe���ðr;tÞi ¼ 1

s

� ffiffiffiffiffi
2s

p þ �ð1� e�
ffiffiffiffi
2s

p
rÞ2ffiffiffiffiffi

2s
p þ �ð1� e�2

ffiffiffiffi
2s

p
rÞ
�
2
: (9)

The expansion of Eq. (9) in powers of � yields the LT of
the moments ~�kðr; sÞ ¼

R1
0 �kðr; tÞe�stdt, for k 2 N. To

invert these LTs, we introduce the family of functions�ðjÞ,
j 2 N, which satisfy

e�
ffiffiffiffi
2s

p
u

ð ffiffiffiffiffi
2s

p Þjþ1
¼
Z 1

0
tðj�1Þ=2�ðjÞ

�
uffiffi
t

p
�
e�stdt: (10)

These functions can be obtained explicitly by induction,

using �ð0ÞðxÞ ¼ 1ffiffiffiffiffi
2�

p e�x2=2, �ðjþ1ÞðxÞ ¼ R1
x �ðjÞðuÞdu

[31,32]. In terms of the �ðjÞ’s (10), we obtain

�kðr;1Þ ¼ 8k!
Xk�1

l¼0

ð�1Þl k� 1

l

 !
½ð2lþ 1Þ�ðkþ1Þðð2lþ 1ÞrÞ

þ ðk� 2ðlþ 1ÞÞ�ðkþ1Þð2ðlþ 1ÞrÞ�: (11)

For k ¼ 1, this yields the result in Eq. (2), using�ð2ÞðxÞ ¼
hðxÞ in Eq. (2). By inverting the LT with respect to � in
Eq. (9), we obtain

Z 1

0
e�stPtð�; rÞdt

¼ �ð�Þ ðe
� ffiffiffiffi

2s
p

r � 1Þ2
sð1þ e�

ffiffiffiffi
2s

p
rÞ2 þ

e��
ffiffiffiffi
2s

p
e
ffiffiffi
2s

p
r=ð2 sinhð ffiffiffiffi2sp

rÞÞ

cosh3ðr
ffiffiffiffi
2s

p
2 Þ

�
�
er

ffiffiffiffi
2s

p
=2ffiffiffiffiffi

2s
p þ �e

ffiffiffiffi
2s

p
r

4 sinhðr ffiffiffiffiffi
2s

p Þ sinhðr
ffiffiffiffi
2s

p
2 Þ

�
; (12)

which has a much more complicated analytical structure
than the corresponding LT of the PDF of the local time
Tlocðr; tÞ of free BM [33].
After Laplace inversion with respect to s of Eq. (12), one

obtains the formula announced in Eq. (3). Indeed we can
check that the coefficient of the term / �ð�Þ (12) is the LT
with respect to t of

FWðr; tÞ ¼ 1þX1
l¼1

4lð�1Þlerfcðlr= ffiffiffiffiffi
2t

p Þ; (13)

which corresponds precisely to the distribution of the width
of BM [34]. The second term, which is the LTwith respect
to t of ptð�; rÞ [35], has a more complicated structure. By
analyzing it for small and large �we obtain the asymptotic
behaviors given in Eq. (4). In particular the limiting
function ptð0; rÞ ¼ lim�!0ptð�; rÞ in Eq. (4) is given by

(see the Supplemental Material [27])
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ptð0; rÞ ¼ 1

2
�ðrÞ þ 2

ffiffiffiffiffiffi
2

�t

s X1
l¼0

ð�1Þlþ1lðlþ 1Þe�l2r2=ð2tÞ;

(14)

such that limr!0þptð0; rÞ ¼ 1ffiffiffiffiffiffi
2�t

p . As we explained it

above, the meaning of ptð� ¼ 0; rÞ (14) is a bit unclear
for BM. One can however make sense of this quantity by
considering BM as the scaling limit of a lattice RW of n
steps, when n ! 1. In particular, we can show that in this
case the delta peak, / �ðrÞ, in ptð0; rÞ (14) corresponds to
trajectories with a unique maximum. The amplitude 1=2 in
front of this delta peak implies that, when n ! 1, the
probability that the RW has a unique maximum is 1=2.
This result can also be checked by an independent direct
calculation. For such a lattice RW, it is also possible (see
the Supplemental Material [27]) to give a probabilistic
interpretation to the infinite sum in Eq. (14). Finally, in
Fig. 2 we show the results of p1ð�; rÞ obtained from
numerical simulations (averages are performed over 107

samples) for three different values of r. We see that they are
in perfect agreement with our exact formula (12).

Brownian bridge.—In the case of a BB, the method
presented above can be straightforwardly adapted to com-
pute the PDF of the DOS �Bðr; tÞ with the simple modifi-
cation that the PDF of tmax is now uniform (a consequence
of periodic boundary conditions). There is however a sim-
pler way to do this calculation by mapping �Bðr; tÞ to the
(standard) local time of a Brownian excursion (BE), which
is a BB conditioned to stay positive. To construct this
mapping, we first transform the path by considering yð�Þ ¼
xmax � xð�Þ. We then break the time interval into two parts
[0, tmax] and [tmax, t] and permute the two associated
portions of the path, the continuity of the path being
guaranteed by xðtÞ ¼ xð0Þ ¼ 0. We finally take the
origin of times at tmax to obtain a BE xEð�Þ on the interval
[0, t]. This construction is well known in the literature
under the name of Vervaat’s transformation [38]. This
shows that �Bðr; tÞ is identical in law to the local time
TE
locðr; tÞ in r [23]

�Bðr; tÞ ¼lawTE
locðr; tÞ ¼

Z t

0
�½xEð�Þ � r�d�; (15)

for the BE xEð�Þ. By performing a similar transformation,
substituting tmax by tmin—the time at which the minimum
is reached—we can show that �Bðr; tÞ for BB and �Eðr; tÞ
for BE are identical in law.

The LT of the PDF of TE
locðr; tÞ in Eq. (15), he��TE

loc
ðr;tÞiE,

where h� � �iE refers to the average over the BE, can be
computed using path integral techniques. As explained
above in Eq. (7) we introduce a cutoff " > 0 such that

xEð0Þ ¼ xEðtÞ ¼ " and obtain he��TE
loc
ðr;tÞiE as

he��TE
loc
ðr;tÞiE ¼ lim

"!0

h"je�H�tj"i
h"je�H0tj"i ; (16)

where H� is given in Eq. (8) with VðxÞ ¼ �ðx� rÞ. The
spectrum of H� can be computed and one obtains

he��TE
loc
ðr;tÞi ¼

Z 1

0

dk
ffiffiffiffiffi
2t3

�

q
k2e�k2t=2

1þ 4�
k sinðkrÞð�k sinðkrÞ þ cosðkrÞÞ :

(17)

By studying the large � behavior of Eq. (17), which is of
order Oð�0Þ, we can show that the PDF of �Bðr; tÞ has an
expression similar to, albeit different from, the one for BM
in Eq. (3): PB

t ð�; rÞ ¼ FB
Wðr; tÞ�ð�Þ þ pB

t ð�; rÞ, where
FB
Wðr; tÞ is the distribution function of the width of the

BB [39] FB
Wðr; tÞ ¼ 1þ 2

P1
l¼1 e

�2l2r2=t½1� ð4l2r2=tÞ�,
while pB

t ð�; rÞ is now a different distribution.
Although the moments �B

k ðr; tÞ ¼ h½�Bðr; tÞ�ki can be

obtained from Eq. (17), there is a much simpler way to
compute them by using the mapping to TE

locðr; tÞ of a BE

(15). One has indeed�B
k ðr;tÞ¼ hQk

i¼1

R
t
0dti�½xEðtiÞ�r�iE,

which can be written as convolutions of propagators of the
BE. This calculation can be performed to get [see also
Eq. (38) in Ref. [40] ]

�B
k ðr; 1Þ ¼ 2

ffiffiffiffiffiffiffi
2�

p
k!
Xk�1

l¼0

ð�1Þl k� 1

l

 !
�ðk�2Þ½2rðlþ 1Þ�;

(18)

with �ð�1Þ ¼ �d�ð0Þ=dr and where the �ðjÞ’s have been
defined below Eq. (10). For k ¼ 1, one finds the mean

DOS for the BB on the unit time interval, ��BðxÞ ¼
�B

1 ðx; 1Þ ¼ 4xe�2x2 , as found in Ref. [40]. Note that it
coincides in this case with the PDF of the maximum of a
BB [which is a generic property for periodic signals such
that xðtÞ ¼ xð0Þ [41]].
One can also show that Eq. (18) yields back the com-

plicated though explicit formula for pB
t ð�; rÞ found in

Ref. [40,42] using a completely different method. In par-

ticular, for large �, one finds pB
1 ð�; rÞ � 16�3e�ð�þ2rÞ2=2

[40,42], slightly different from Eq. (4) for BM, while
lim�!0p

B
1 ð�; rÞ ¼ pB

1 ð0; rÞ where pB
1 ð0;rÞ¼ 1

2�ðrÞþ
1
2@rF

B
Wðr;tÞ. This formula can be interpreted exactly as

we did for BM [see below Eq. (14)].
Discussion.—The method developed here, in particular

the formulas in Eqs. (5)–(7). is very general and can be
used to study any functional of xmax. Here we have studied
the case of �ðr; tÞ in Eq. (1), which corresponds to VðxÞ ¼
�ðx� rÞ but another class of functionals of xmax, with
several applications, are of the form T�ðtÞ ¼

R
t
0½xmax �

xð�Þ��d�. They correspond to a potential VðxÞ ¼ x� in
Eqs. (7) and (8). The case � ¼ �1 is quite interesting as
T�1ðtÞ describes the fluctuations of the cost of the optimal
search algorithm for the maximum of a RW [43,44]. The
case � ¼ �1=2 is also interesting as T�1=2ðtÞ describes the
largest exit time of a particle diffusing through a random
(Brownian) potential. Finally the case � ¼ 1 corresponds
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to the area under a Brownian meander [29,30]. Our method
(5)–(7) allows us to study the statistics of T�ðtÞ for any
value of �, interpolating between the aforementioned
observables, using a unifying physical approach. Besides
the potential applications of the method developed here,
our exact results for near-extreme statistics of a strongly
correlated process as BM, gives rise to further challenging
questions. The first one concerns the temporal resolution of
the density of near extremes. While in Eq. (1) we have
studied a time integrated observable, it is natural to study
the statistics of the quantity �½xmax � xð�Þ � r� and its
correlations at different values of �. Finally it will be
interesting to extend the present results to other stochastic
processes, like for instance Lévy flights or branching
processes.

We thank C. Banderier for useful correspondence and
S. Sabhapandit for useful discussions at the earliest stage of
this work. We also acknowledge support by ANR Grant
No. 2011-BS04-013-01, WALKMAT, and in part by the
Indo-French Centre for the Promotion of Advanced
Research under Project No. 4604-3. G. S acknowledges
partial support from the Labex PALM (project
RANDMAT).

*anthony.perret@lptms.u-psud.fr
†comtet@lptms.u-psud.fr
‡majumdar@lptms.u-psud.fr
§gregory.schehr@lptms.u-psud.fr

[1] E. J. Gumbel, Statistics of Extremes (Columbia University,
New York, 1958).

[2] R.W. Katz, M. P. Parlange, and P. Naveau, Adv. Water
Resour. 25, 1287 (2002).

[3] P. Embrecht, C. Klüppelberg, and T. Mikosh, Modelling
Extremal Events for Insurance and Finance (Springer-
Verlag, Berlin, 1997).

[4] S. N. Majumdar and J.-P. Bouchaud, Quant. Finance 8,
753 (2008).

[5] J.-P. Bouchaud and M. Mézard, J. Phys. A 30, 7997
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