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We introduce the concept of embedding quantum simulators, a paradigm allowing the efficient quantum

computation of a class of bipartite and multipartite entanglement monotones. It consists in the suitable

encoding of a simulated quantum dynamics in the enlarged Hilbert space of an embedding quantum

simulator. In this manner, entanglement monotones are conveniently mapped onto physical observables,

overcoming the necessity of full tomography and reducing drastically the experimental requirements.

Furthermore, this method is directly applicable to pure states and, assisted by classical algorithms, to the

mixed-state case. Finally, we expect that the proposed embedding framework paves the way for a general

theory of enhanced one-to-one quantum simulators.
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Entanglement is considered one of the most remarkable
features of quantummechanics [1,2], stemming from bipar-
tite or multipartite correlations without a classical counter-
part. First revealed by Einstein, Podolsky, and Rosen as a
possible drawback of quantum theory [3], entanglement
was subsequently identified as a fundamental resource for
quantum communication [4,5] and quantum computing
purposes [6,7]. Beyond considering entanglement as a
purely theoretical feature, the development of quantum
technologies has allowed us to create, manipulate, and
detect entangled states in different quantum platforms.
Among them, we can mention trapped ions, where eight-
qubit W and fourteen-qubit Greenberger-Horne-Zeilinger
states have been created [8,9], circuit QED, where seven
superconducting elements have been entangled [10], super-
conducting circuits, where continuous-variable entangle-
ment has been realized in propagating quantum
microwaves [11], and bulk-optic based setups, where entan-
glement between eight photons has been achieved [12].

Quantifying entanglement is considered a particularly
difficult task, from both theoretical and experimental view-
points. In fact, it is challenging to define entanglement
measures for an arbitrary number of parties [13,14].
Moreover, the existing entanglement monotones [15] do
not correspond directly to the expectation value of a
Hermitian operator [16]. Accordingly, the computation of
many entanglement measures (see Ref. [17] for lower
bound estimations) requires previously the reconstruction
of the full quantum state, which could be a cumbersome
problem if the size of the associated Hilbert space is large.
If we consider, for instance, an N-qubit system, quantum
tomography techniques become already experimentally
unfeasible for N � 10 qubits. This is because the dimen-
sion of the Hilbert space grows exponentially with N, and
the number of observables needed to reconstruct the quan-
tum state scales as 22N � 1.

From a general point of view, a standard quantum
simulation is meant to be implemented in a one-to-one
quantum simulator where, for example, a two-level system
in the simulated dynamics is directly represented by an-
other two-level system in the simulator. In this Letter, we
introduce the concept of embedding quantum simulators,
allowing the efficient computation of a wide class of
entanglement monotones [15]. This method can be applied
at any time of the evolution of a simulated bipartite or
multipartite system, with the prior knowledge of the
Hamiltonian H and the corresponding initial state jc 0i.
The efficiency of the protocol lies in the fact that, unlike
standard quantum simulations, the evolution of the state
jc 0i is embedded in an enlarged Hilbert space dynamics
(see Fig. 1). Note that enlarged-space structures have
been previously considered for different purposes in
Refs. [18–21]. In our case, antilinear operators associated
with a certain class of entanglement monotones can be
efficiently encoded into physical observables, overcoming
the necessity of full state reconstruction. The simulating
quantum dynamics, which embeds the desired quantum
simulation, may be implemented in different quantum
technologies with analog and digital simulation methods.
Complex conjugation and entanglement monotones.—

An entanglement monotone is a function of the quantum
state, which is zero for all separable states and does not
increase on average under local quantum operations and
classical communication [15]. There are several functions
satisfying these basic properties, such as concurrence [16]
or 3-tangle [22], extracting information about a specific
feature of entanglement. For pure states, an entanglement
monotone Eðjc iÞ can be defined univocally, while the
standard approach for mixed states requires the computa-
tion of the convex roof

Eð�Þ ¼ min
fpi;jc iig

X
i

piEðjc iiÞ: (1)
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Here, � ¼ P
ipijc iihc ij is the density matrix describing

the system, and the minimum in Eq. (1) is taken over all
possible pure-state decompositions [2].

A systematic procedure to define entanglement monot-
ones for pure states involves the complex-conjugation
operator K [23,24]. For instance, the concurrence for
two-qubit pure states [16] can be written as

Cðjc iÞ � jhc j�y � �yKjc ij: (2)

Note that �y � �yK, where Kjc i � jc �i, is an antilinear

operator that cannot be associated with a physical observ-
able. In general, we can construct entanglement monotones
for N-qubit systems by combining three operational
building blocks: K, �y, and g������, with g�� ¼
diagf�1; 1; 0; 1g, �0 ¼ I2, �1 ¼ �x, �2 ¼ �y, and �3 ¼
�z, where we assume the repeated index summation
convention [24]. For a two-qubit system, N ¼ 2, we
can define jhc j�y � �yKjc ij and jg��g��hc j�� �
��Kjc ihc j�� � ��Kjc ij as entanglement monotones.
The first expression corresponds to the concurrence, and
the second one is a second-order monotone defined in
Ref. [24]. For N ¼ 3 we have jg��hc j�� � �y �
�yKjc ihc j�� � �y � �yKjc ij, corresponding to the

3-tangle [22], and so on.
To evaluate the above class of entanglement monotones

in a one-to-one quantum simulator, we would need to
perform full tomography on the system. This is because
terms like hc jOKjc i � hc jOjc �i, with O Hermitian, do
not correspond to the expectation value of a physical
observable, and they have to be computed classically
once each complex component of jc i is known. We will
explain now how to compute efficiently quantities such as
hc jOKjc i in our proposed embedding quantum simulator,
via the measurement of a reduced number of observables.

Consider a pure quantum state jc i of an N-qubit system
2 C2N , whose evolution is governed by the HamiltonianH
via the Schrödinger equation (@ ¼ 1)

ði@t �HÞjc ðtÞi ¼ 0: (3)

The quantum dynamics associated with the HamiltonianH
can be implemented in a one-to-one quantum simulator
[25,26], or, alternatively, it can be encoded in an embed-
ding quantum simulator, where K may become a physical
quantum operation [27]. The latter can be achieved accord-
ing to the following rules.
Embedding quantum simulator.—We define a mapping

M: C2N ! R2Nþ1 in the following way:

jc i ¼

c 1
re þ ic 1

im

c 2
re þ ic 2

im

c 3
re þ ic 3

im

..

.

0
BBBBBBB@

1
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..

.
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: (4)

Hereafter, we will call C2N the simulated space and R2Nþ1

the simulating space or the enlarged space. We note that

the resulting vector j ~c i has only real components (see
Refs. [18–20] for other developments involving real

Hilbert spaces) and that the reverse mapping is jc i ¼
Mj ~c i, with M ¼ ð1; iÞ � I2N . It is noteworthy to mention
that, for an unknown initial state, the mapping M is not
physically implementable. However, according to Eq. (4),
the knowledge of the initial state in the simulated space
determines completely the possibility of initializing the
state in the enlarged space. Furthermore, it can be easily
checked that the inverse mapping M can always be com-
pleted to form a unitary operation.
Now, we can write

Kjc i� jc �i¼Mj ~c �i¼Mð�z� I2N Þj ~c i�M ~Kj ~c i; (5)

which, despite its simple aspect, has important consequen-
ces. Basically, Eq. (5) tells us that, while jc i and jc �i
are connected by the unphysical operation K in the simu-
lated space, the relation between their images in the

enlarged space, j ~c i and j ~c �i, is a physical quantum gate
~K � ð�z � I2N Þ. In this way, we obtain that

hc jOKjc i ¼ h ~c jMyOMð�z � I2N Þj ~c i; (6)

where we can prove that

MyOMð�z � I2N Þ ¼ ð�z � i�xÞ �O: (7)

Note that MyOMð�z � I2N Þ is a linear combination of
Hermitian operators �z �O and �x �O. Hence, its expec-
tation value can be efficiently computed via the measure-
ment of these two observables in the enlarged space.

FIG. 1 (color online). One-to-one quantum simulator versus
embedding quantum simulator. The conveyor belts represent the
dynamical evolution of the quantum simulators. The real (red)
and imaginary (blue) parts of the simulated wave vector compo-
nents are split in the embedding quantum simulator, allowing the
efficient computation of entanglement monotones.
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So far, we have found a mapping for quantum states and
expectation values between the simulated space and the
simulating space. If we also want to consider an associated
quantum dynamics, we would need to map the Schrödinger
equation (3) onto another one in the enlarged space. In this
sense, we look for a wave equation

ði@t � ~HÞj ~c ðtÞi ¼ 0; (8)

whose solution respects jc ðtÞi ¼ Mj ~c ðtÞi and jc �ðtÞi ¼
M ~Kj ~c ðtÞi, thereby assuring that the complex-conjugate
operation can be applied at any time t with the same
single-qubit gate. If we define in the enlarged space a
(Hermitian) Hamiltonian ~H satisfying M ~H ¼ HM, while
applying M to both sides of Eq. (8), we arrive at the

equation ði@t �HÞMj ~c ðtÞi ¼ 0. It follows that if j ~c ðtÞi
is the solution of Eq. (8) with the initial condition j ~c 0i,
then Mj ~c ðtÞi is the solution of the original Schrödinger

equation (3) with the initial condition Mj ~c 0i. Thus, if
jc 0i ¼ Mj ~c 0i, then jc ðtÞi ¼ Mj ~c ðtÞi, as required. The
Hamiltonian ~H satisfying HM ¼ M ~H reads

~H ¼ iB iA

�iA iB

 !
� ½iI2 � B� �y � A�; (9)

where H ¼ Aþ iB, with A ¼ Ay and B ¼ �By real
matrices, corresponds to the original Hamiltonian in the
simulated space. We note that ~H is a Hermitian imaginary
matrix; e.g., H ¼ �x � �y þ �x � �z is mapped into ~H ¼
I2 � �x � �y � �y � �x � �z, which is Hermitian and

imaginary. In this sense, j ~c 0i with real entries implies

the same character for j ~c ðtÞi, given that the Schrödinger
equation is a first-order differential equation with real
coefficients. In this way, the complex-conjugate operator
in the enlarged space ~K ¼ �z � I2N is the same at any
time t.

On one hand, the implementation of the dynamics
of Eq. (8) in a quantum simulator will turn the computation
of entanglement monotones into an efficient process; see
Fig. 2. On the other hand, the evolution associated to
Hamiltonian ~H can be implemented efficiently in different
quantum simulator platforms, as is the case for trapped
ions or superconducting circuits [28,29]. We want to
point out that, in the most general case, the dynamics
of a simulated system involving n-body interactions
will require an embedding quantum simulator with
(nþ 1)-body couplings. This represents, however, a small
overhead of experimental resources. It is noteworthy to
mention that the implementation of many-body spin inter-
actions has already been realized experimentally in digital
quantum simulators in trapped ions [28]. In conclusion,
quantum simulations in the enlarged space require
the quantum control of only one additional qubit.

Efficient computation of entanglement monotones.—A
general entanglement monotone constructed with K, �y,

and g������ contains at most 3k terms of the form

hc jOKjc i, k being the number of times that g������

appears. Thus, to evaluate the most general set of entan-
glement monotones, we need to measure 2� 3k observ-
ables, in contrast with the 22N � 1 required for full
tomography.
We present now examples showing how our protocol

minimizes the required experimental resources.
(i) The concurrence.—This two-qubit entanglement

monotone defined in Eq. (2) is built by using �y and K,

and it can be evaluated with the measurement of two
observables in the enlarged space, instead of the 15
required for full tomography. Suppose we know jc 0i and
want to compute C½jc ðtÞi�, where jc ðtÞi � e�iHtjc 0i. We

first initialize the quantum simulator with the state j ~c 0i
using the mapping of Eq. (4). Second, this state evolves
according to Eq. (8) for a time t. Finally, following Eq. (6)
with O ¼ �y � �y, we compute the quantity

h ~c ðtÞj�z � �y � �y � i�x � �y � �yj ~c ðtÞi; (10)

by measuring the observables �z � �y � �y and �x �
�y � �y in the enlarged space.

(ii) The 3-tangle.—The 3-tangle [22] is a 3-qubit entan-
glement monotone defined as �3ðjc iÞ ¼ jg��hc j�� �
�y � �yKjc ihc j�� � �y � �yKjc ij. It is built by using

g������ and K, so the computation of �3 in the enlarged

space requires six measurements instead of the 63 needed
for full tomography. The evaluation of �3½jc ðtÞi� can be
achieved by following the same steps explained in the
previous example, but now computing the quantity

FIG. 2 (color online). Protocol for computing entanglement
monotones (EMs) by using the enlarged space formalism (blue
arrows) compared with the usual protocol (black arrows). For
any initial state jc 0i, we can construct through the mapping M
its image j ~c 0i in the enlarged space. The evolution will be
implemented by using analog or digital techniques giving rise to
the state j ~c ðtÞi. The subsequent measure of a reduced number of
observables will provide us with the EMs.
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j�h ~c ðtÞj�z� I2��y��y� i�x� I2��y��yj ~c ðtÞi2
þh ~c ðtÞj�z��x��y��y� i�x��x��y��yj ~c ðtÞi2
þh ~c ðtÞj�z��z��y��y� i�x��z��y��yj ~c ðtÞi2j;

(11)

with the corresponding measurement of observables in the
enlarged space.

(iii) N–qubit monotones.—In this case, the simplest
entanglement monotone is jhc j��N

y Kjc ij if N is even

(expression that is identically zero if N is odd) and
jg��hc j�� � ��N�1

y Kjc ihc j�� � ��N�1
y Kjc ij if N is

odd. The first entanglement monotone needs two measure-
ments, while the second one needs six. This minimal
requirements have to be compared with the 22N � 1
observables required for full quantum tomography.

(iv) The mixed-state case.—Once we have defined
Eðjc iÞ for the pure-state case, we can extend our method
to the mixed-state case via the convex roof construction;
see Eq. (1). Such a definition is needed because the pos-
sible pure-state decompositions of � are infinite, and each
of them brings a different value of

P
ipiEðjc iiÞ. By con-

sidering its minimal value, as in Eq. (1), we eliminate this
ambiguity, preserving the properties that define an entan-
glement monotone. To decide when Eð�Þ is zero is called
the separability problem, and it is proven to be NP hard for
states close enough to the border between the sets of
entangled and separable states [30,31]. However, there
exist useful classical algorithms [32] able to find an esti-
mation of Eð�Þ up to a finite error [33,34].

Our approach for mixed states involves a hybrid
quantum-classical algorithm, working well in cases in
which � is approximately a low-rank state. We restrict
our study to the case of unitary evolutions acting on mixed
states, given that the inclusion of dissipative processes
would require an independent development. Let us con-
sider a state with rank r and assume that the pure-state
decomposition solving Eq. (1) has c additional terms. That
is, k ¼ rþ c, with k being the number of terms in the
optimal decomposition, while c is assumed to be low. An
algorithm that solves Eq. (1) (see, for example, [33,34])
evaluates at each step the quantity

P
k
i¼1 piEðjc iiÞ, and,

depending on the result, it changes fpi; jc iig in order to
find the minimum. Our method consists in inserting an
embedded quantum simulation protocol in the evaluation
of each Eðjc iiÞ, which can be done with a few measure-
ments in the enlarged space. We gain in efficiency with
respect to full tomography if k � l �m< 22N � 1, where l is
the number of iterations of the algorithm and m is the
number of measurements to evaluate the specific entangle-
ment monotone. We note that m is a constant that can be
low, depending on the choice of E, and, if � is low rank, k is
a low constant, too. With this approach, the performance of
the computation of entanglement monotones, Eð�Þ, can be
cast in two parts: While the quantum computation of

P
k
i¼1 piEðjc iiÞ can be efficiently implemented, the subse-

quent minimization remains a difficult task.
Conclusions.—We have presented a paradigm for the

efficient computation of a class of entanglement monoto-
nes requiring minimal experimental added resources. The
proposed framework consists in the adequate embedding of
a quantum dynamics in the degrees of freedom of an
enlarged-space quantum simulator. In this manner, we
have proposed novel concepts merging the fundamentals
of quantum computation with those of quantum simula-
tion. We believe that this novel embedding framework
for quantum simulators will enhance the capabilities of
one-to-one quantum simulations.
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