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Bose-Einstein condensation, the macroscopic occupation of a single quantum state, appears in

equilibrium quantum statistical mechanics and persists also in the hydrodynamic regime close

to equilibrium. Here we show that even when a degenerate Bose gas is driven into a steady state far

from equilibrium, where the notion of a single-particle ground state becomes meaningless, Bose-Einstein

condensation survives in a generalized form: the unambiguous selection of an odd number of states

acquiring large occupations. Within mean-field theory we derive a criterion for when a single state and

when multiple states are Bose selected in a noninteracting gas. We study the effect in several driven-

dissipative model systems, and propose a quantum switch for heat conductivity based on shifting between

one and three selected states.
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In quantum many-body physics there is currently a huge
interest in nonequilibrium phenomena beyond the hydro-
dynamic description of systems retaining approximate local
equilibrium. Recently, intriguing results have been obtained
for paradigmatic scenarios: the dynamics away from equi-
librium in response to a parameter variation [1–3], the
possible relaxation towards equilibrium [2,3] versus many-
body localization [4,5], and the control of many-body phys-
ics by means of strong periodic forcing [6–8]. Another
fundamental scenario of quantum many-body dynamics is
nonequilibrium steady states of driven-dissipative systems,
with transport of, e.g., mass or energy through the system
[9–11]. In this context one might ask simple questions:What
are the properties of an ideal Bose gas driven to a steady
state far from equilibrium? In particular, what happens in the
quantum degenerate regime, where in equilibrium Bose-
Einstein condensation occurs?

In this Letter we investigate the quantum degenerate
regime of driven-dissipative ideal Bose gases ofN particles
in steady states far from equilibrium, assuming weak
coupling to the environment. Examples of such systems
comprise bosons coupled to two heat baths of different
temperature and time-periodically forced bosons in contact
with a single heat bath. For large densities these systems
are found to exhibit an intriguing generic behavior. Namely
the single-particle states unambiguously separate into two
groups: one, that we call Bose selected, whose occupations
increase linearly when the total particle number is
increased at fixed system size, and another one whose
occupations saturate. Remarkably, this generalized form
of Bose condensation is a very consequence of bosonic
indistinguishability, not relying on thermodynamic equi-
librium. We show examples both with the number of
selected states being extensive and of order one, the latter
corresponding to a fragmented condensate [12] with a
macroscopic occupation of each selected state (not relying

on ground-state degeneracy). We propose to switch the
heat conductivity of a system by shifting between one
selected state (corresponding to standard Bose condensa-
tion) and three selected states.
Our findings are relevant for artificial many-body quan-

tum systems such as superconducting and optical circuits
[13–16], exciton-polariton fluids [16,17], or photons in a
dye-filled cavity [18], that are intrinsically driven dissipa-
tive. Tailored dissipation has also been used or proposed as a
powerful tool for quantum engineering in ultracold atomic
quantum gases [19–22] and trapped ions [21,23,24]. Our
results, moreover, provide a connection between Bose
condensation in quantum systems and the phenomenon of
real-space condensation in classical nonequilibrium models
[25–29], where also condensation into multiple states has
been found [30–33].
Consider an open quantum system of a single particle

weakly coupled to an environment, with reduced density
operator �. The time evolution shall be given by a
Markovian master equation _�ðtÞ ¼ Lð�ðtÞÞ with linear
Liouvillian L, guiding the system into a steady state �1
that is diagonal with respect to the (quasi)energy eigen-
states i ¼ 1; 2; . . . ;M [34]. The dynamics of the diagonal
elements pi � hij�jii is given by

_pi ¼
XM

j¼1

ðRijpj � RjipiÞ (1)

with rates Rij for a quantum jump from j to i that, for

simplicity, we assume to be strictly positive, Rij > 0.

Now we generalize the single-particle problem (1) to a
gas of N noninteracting bosons. The many-body steady
state �̂1 will be diagonal in the Fock basis jni labeled by
the occupation numbers n ¼ ðn1; n2; . . . nMÞT of the single-
particle states i, obeying

P
ini ¼ N: hn0j�̂1jni ¼ �n0npn.

The N-boson rate equation reads
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_pn ¼ XM

i;j¼1

ðRijpnji
� RjipnÞniðnj þ 1Þ; (2)

where nji denotes the occupation numbers obtained from n

by transferring one particle from i to j [35]. The steady
state with _pn ¼ 0 is unique, if every state can be reached
from every other one via a sequence of finite-rate quantum
jumps [36,37]. This is true for every N, if it is true for the
single-particle problem (1). Equation (2) is classical in the
sense that it involves the diagonal elements of the density
matrix only. However, the bosonic quantum statistics is
reflected in the fact that the rate for a jump from i to j
depends both on ni and nj. This rate reads Rjinið1þ �njÞ
with � ¼ �1, 0, þ1 for fermions, distinguishable parti-
cles, and bosons, respectively.

As a transparent model system, we will first consider
rate matrices Rij given by exponentially distributed, inde-

pendent random numbers [38]. This choice is motivated by
the distribution of rates obtained for fully chaotic systems
(see the Supplemental Material [39]). In this model the
number of states M corresponds to the system size and,
thus, the filling factor n � N=M to the density. In Fig. 1 we
plot the mean steady-state occupations �ni versus n, for
two realizations of Rij with M ¼ 10 and M ¼ 200; here

�ni ¼ hn̂iiwith number operator n̂i and h�i ¼ trf�̂1�g. In the
nondegenerate regime of low filling n � 1 the relative
occupations �ni=N approach the n-independent single-
particle probabilities pi. Quantum-statistical corrections
make themselves felt when entering the degenerate regime
at n� 1. For even larger densities n, around a crossover
value n�, we observe that for a group ofMS single-particle
states the occupation grows linearly with N, while the

occupation of the remaining states saturates. This is the
aforementioned effect of Bose selection. Asymptotically, in
the ultradegenerate regime n � n�, the relative occupations
of the selected states �ni=N aswell as the absolute occupations
�ni of the nonselected states become independent of n.
Within the ensemble of rate matrices the number of

selected statesMS is found to be always odd [e.g.. Fig. 1(a),

inset] and on average MS ¼ M=2 with fluctuations �M1=2

(a systemwith nonextensiveMS � 1 is presented below). The
crossover to Bose selection occurs around n ¼ n�, when the
density reaches the saturationvalue of the average occupation
of a nonselected state [Fig. 1(b), thick lines]. In the random-

rate model n� increases like�M1=2 withM [Fig. 1(b), inset]
[40]. Therefore, in thismodelBose selection does not occur in
the thermodynamic limit,M ! 1 keeping n constant, but in
finite systems (similar to finite-temperature equilibriumBose
condensation in one dimension).
In order to treat large systems and to understand the

behavior visible in Fig. 1, we derive a mean-field (MF)
theory from the equation of motion _�ni ¼ trð _̂�n̂iÞ for the �ni
by approximating two-state correlations hn̂in̂ji by the triv-

ial ones given by Wick decomposition, hn̂in̂ji � �ni �nj (for

i � j). This gives a closed set of nonlinear equations

_�ni ¼
XM

j¼1

½Rij �njð �ni þ 1Þ � Rji �nið �nj þ 1Þ	; (3)

for the �ni and is equivalent to a Gaussian ansatz �̂ /
expð�P

i�in̂iÞ with �i ¼ lnð �n�1
i þ 1Þ. The MF theory

is confirmed by the Monte Carlo data [Figs. 1(a), 2(a),
and 2(d)] [41].
An asymptotic theory for the ultradegenerate regime,

particle number to infinity at fixed system size, (not to be
confused with the thermodynamic limit: system size to
infinity at fixed density) can be derived from the MF
Eq. (3) for _�ni ¼ 0. The naive approximation ð �nk þ 1Þ ’
�nk leads to the set of equations 0 ¼ �ni

P
jðRij � RjiÞ �nj that

generally does not possess a physical solution with non-
negative occupations �ni 
 0, unless several of the �ni van-
ish. This gives already a hint why Bose selection occurs,
but it does not tell us which states become selected, since,
e.g., �ni ¼ N�ik would be a solution for any state k. A
systematic theory is obtained by assuming that there is
some (yet to be determined) set S of Bose selected
single-particle states with occupation numbers �n that
are large compared to one as well as to the occupations
of the nonselected states�n0. This allows us to expand the
�ni in powers of n�1. In leading order we obtain the closed
set of linear equations for the Bose selected states

0 ¼ X

j2S

ðRij � RjiÞ �nj; i 2 S: (4)

The fact that (Rij � Rji) is a skew-symmetric matrix guar-

antees a zero determinant and a solution of Eq. (4) provided
the set S contains an odd numberMS of states (for evenMS

10−2

100

102

104

106

108

100 103 106
n

n̄i ∼ n
(a)

0.0

0.3

0.6

0 5 10MS

P (MS)

n∗

n∗

10−2 100 102 104 106
n

(b)

∼ M
1
2

10 100M

n∗

1

10

100

FIG. 1 (color online). (a) Mean occupations �ni versus density
n ¼ N=M for one realization of the random-rate matrix Rij with

M ¼ 10. Crosses are from quasiexact Monte Carlo theory (see
the Supplemental Material [39,54]), and solid (dashed) lines are
from mean-field (asymptotic) theory described below. For large
n the occupations ofMS ¼ 5 Bose selected states do not saturate.
Inset: distribution of MS for the ensemble of rate matrices.
(b) Like (a), but with M ¼ 200 and MS � M=2. Thick lines:
average occupation of a selected and a nonselected state, exactly
(dashed) and assuming equal occupation n for n < n� followed
by saturation of the nonselected occupations (solid). Inset: cross-
over density n� versus system size M.

PRL 111, 240405 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

13 DECEMBER 2013

240405-2



the existence of a solution requires fine tuned rates Rij).

Thus generically one expects an odd number of selected
states, in accordance with the numerically obtained distri-
bution [Fig. 1(a), inset]. The next order describes the occu-
pations of the nonselected states

�ni ¼ 1

gi � 1
with gi ¼

P
j2S Rji �njP
j2S Rij �nj

; i =2 S; (5)

and gives also corrections to the occupations of the
selected states that we omit here [even higher orders can
become relevant when allowing some rates Rij to be zero

(see the Supplemental Material [39])]. Equation (4) deter-
mines the relative occupations among the selected states.
These are independent of the total particle number N and,
in turn, dictate the absolute occupations of the nonselected
states via Eq. (5). The latter, thus, do not depend on N,
corresponding to the saturation behavior visible in Fig. 1.
The total number of particles occupying the selected states,
including corrections to the leading order (4), is given by
N �P

i=2S �ni and increases linearly with N (since the

‘‘depletion’’
P

i2S �ni is independent of N). This behavior
is generic for the ultradegenerate regime and generalizes
Bose condensation, where the occupation of a single state k
increases with N. Remarkably, Bose selection is a very
consequence of the bosonic quantum statistics, not relying
on equilibrium statistical mechanics.

The set S of selected states has to be determined by the
physical requirement that the occupations �ni of both the

selected and the nonselected states are nonnegative. It can
be shown that a unique physical solution with positive
occupations exists [42], as expected from the fact that a
unique steady state of Eq. (2) exists (see the Supplemental
Material [39]). We are not aware of an easy strategy
(beyond trial and error) that generally allows us to determine
which and howmany states are selected. However, if there is
a ground-state-like single-particle state k, characterized by
Rki > Rik for all i � k, then only this state kwill be selected
andMS ¼ 1, corresponding to Bose-Einstein condensation.
Namely, since Eq. (4) is fulfilled trivially and Eq. (5) gives
positive occupations �ni�k ¼ ½Rki=Rik � 1	�1 > 0 for the
nonselected states, this is the (unique) physical solution. In
contrast, as soon as there is no such ground-state-like state k
anymore, then more than a single state must be selected.
An important special case is rate matrices for a system

with single-particle energies E1 < E2 � E3 . . . in weak
contact with a thermal bath of inverse temperature � for
which the rate matrices obey Rji=Rij ¼ exp½�ðEi � EjÞ	.
Such rates guarantee detailed balance, i.e., the existence of
an equilibrium steady state for which each summand on the
right-hand side of Eqs. (1) and (2) vanishes independently. In
the ultradegenerate regime, one then recovers from Eq. (5)
the familiar expression �ni ¼ fexp½�ðEi � E1Þ	 � 1g�1 for
i > 1 while �n1 ¼ N �P

i>1 �ni. Therefore (excluding
ground-state degeneracy E1 ¼ E2) a nonequilibrium steady
state breaking detailed balance, as it is found in driven-
dissipative systems, is a necessary condition for observing
Bose selection ofmore than a single state.However, breaking
detailed balance is not sufficient, as can be inferred from the
example of a system driven between two baths of different

positive temperature. In this case the rates sum up Rij ¼
Rð1Þ
ij þ Rð2Þ

ij and, despite the fact that the combined rates

do not lead to detailed balance anymore, they still obey
R1i > Ri1 for all i � 1 such that only the ground state will
be selected. Below we will discuss concrete systems of two
classes for which MS > 1 is found naturally: (i) systems in
weak contact with two baths, one with positive temperature
and another, energy-inverted one with negative temperature,
and (ii) time-periodically driven systems in weak contact
with a thermal bath.
Let us now investigate the effect of Bose selection in the

concrete physical model system of a one-dimensional
tight-binding lattice. Such a model describes, e.g., an array
of Josephson junctions, ultracold atoms in optical lattices,
or vibrons in an ion chain [23,43]. On the single-particle
level, the lattice sites ‘ ¼ 1; . . . ;M are coupled by tunnel-
ing, h‘0jHj‘i ¼ �J�‘0;‘�1 with J > 0. The eigenstates i are
delocalized; thus, a highly coordinated rate matrix results
from coupling a bath to a local operator like v‘ ¼ j‘ih‘j.
The resulting rate matrix can be derived microscopically
within the Born-Markov approximation [34] (see the
Supplemental Material for details of the Ohmic baths
used here and a plot of the rate matrix [39]). In order to
achieve Bose selection with MS > 1 we consider two
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FIG. 2 (color online). (a) Occupations �ni from mean-field
(lines) and Monte Carlo (crosses) calculations for N ¼ 104

bosons on a tight-binding lattice of M ¼ 10 sites, weakly
coupled with strengths �1;2 to two baths of temperature T1 ¼
�T2 ¼ J, as depicted in (c). (b) Heat flow Q from bath 2 to bath
1 (arbitrary units, �1 þ �2 kept constant); the shaded (unshaded)
area corresponds to MS ¼ 3 (MS ¼ 1). (d) Occupations of
single-particle Floquet states for the tight-binding chain with
the coupling to bath 2 replaced by a driving term of strength �!

as depicted in (e).
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baths, as sketched in Fig. 2(c): one with positive tempera-
ture T1 ¼ J couples with strength �1 to v1 and another one
with negative temperature T2 ¼ �J couples with strength
�2 to vM�1 [44]. Here the negative temperature models a
bath with occupations that increase with energy. In Fig. 2(a)
we plot the mean occupations of the eigenstates of the
tight-binding chain versus the relative coupling strength
ð1þ �1=�2Þ�1 for large filling. One can observe Bose
selection as a clear separation between highly occupied
states on the one hand and states with occupations &1 on
the other. For �2 ¼ 0 the system is in equilibrium and Bose
condensation, the selection of a single state, is found. When
the coupling to the inverted bath is switched on, at ð1þ
�1=�2Þ�1 � 0:2 three states become selected [Fig. 2(a),
shaded area]. While the data of Fig. 2(a) correspond to
M ¼ 10, for�2=�1 ¼ 1we have studied also larger systems
with up to M ¼ 300 sites and always found three states
selected. This suggests, that the model of Fig. 2(c) is an
example where, in contrast to the random-rate model, the
number of selected states remains of order one (while still
being larger than one). This corresponds to a fragmented
condensate with a macroscopic occupation of each selected
state.

As a striking signature for the selection of more than a
single state, at the transition from MS ¼ 1 to MS ¼ 3 a
significant steady-state heat flowQ from bath 2 to bath 1 is
established abruptly [Fig. 2(b)]. The heat flow from bath

b ¼ 1, 2 into the system reads Qb ¼ P
ijR

ðbÞ
ji �nið �nj þ 1Þ

ðEj � EiÞ. This explains an increase by orders of magni-

tude from�n to�n2 when the transition from one to three
selected states occurs [since �ni � n ( �ni � 1) for selected
(nonselected) states]. Thus, the mechanism of Bose selec-
tion might be used to design quantum devices working far
from equilibrium that allow us to switch the heat conduc-
tivity via the number of selected states.

Let us now consider time-periodically driven quantum
systems (Floquet systems) with Hamiltonian HðtÞ ¼
Hðtþ 2�=!Þ [45–47]. When coupled weakly to a thermal
bath, these systems can be described within Floquet-Born-
Markov theory [48–52]. One obtains Eqs. (1) and (2) with i
labeling single-particle Floquet states. In the Supplemental
Material we show that the rate differences Rij � Rji are

independent of the bath temperature [39]. According to
Eqs. (4) and (5) this implies that the selected states and their
relative occupations are temperature independent, whereas
the occupations of the nonselected states (and thus also the
crossover density n�) are temperature dependent.

Replacing the energy-inverted bath coupled to one end of
the tight-binding chain by a coherent periodic driving term
�!J cosð!tÞvM with @! ¼ 1:5J [Fig. 2(e)], we obtain the
occupations of the single-particle Floquet states versus the
driving strength �! [Fig. 2(d)]. In this driven-dissipative
system we observe again both Bose condensation into a
single state—which state is controlled by the parameters—
and Bose selection of MS ¼ 3 states.

Two more examples that emphasize that Bose selection
is a generic and robust effect in open time-periodically
driven systems are given in the Supplemental Material
[39]: the N-boson generalizations of the open kicked rotor
and the open driven quartic oscillator of Ref. [53].
In Figs. 2(a) and 2(d), we can study the evolution of the

occupations with respect to a parameter controlling the rate
matrix. Within the asymptotic theory (4) and (5) transitions
of states between the groups of selected and nonselected
states are triggered either by the occupation of a selected
state approaching zero or by the occupation of a nonse-
lected state diverging. Both require the fine tuning of a
single parameter. While at the transition point an even
number of states is selected, after the transition again the
generic situation with an odd number of states has to be
recovered. Thus, a second state has to make a transition at
the transition point, too. When approaching the transition
point from the other side, this second state plays the role of
the triggering one. One finds three types of two-state
processes, examples of which are labeled by I, II, and III
in Figs. 2(a) and 2(d): the transition is triggered from one
side by a selected and from the other one by a nonselected
state (I, MS changes by 2), or the transition is triggered on
both sides either by selected (II) or nonselected (III) states
(MS does not change).
In future work, it will be interesting to study the impact

of, e.g., dimensionality, particle reservoirs, disorder, and
interactions on the effect of Bose selection in nonequilib-
rium steady states. A concrete application of Bose selec-
tion in a physical system is the quantum switch for heat
conductivity proposed here.
We warmly thank Martin Holthaus for valuable discus-

sions initiating this work and Henning Schomerus for
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