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The rheology of dense granular flows is studied numerically in a shear cell controlled at constant

pressure and shear stress, confined between two granular shear flows. We show that a liquid state can be

achieved even far below the yield stress, whose flow can be described with the same rheology as above the

yield stress. A nonlocal constitutive relation is derived from dimensional analysis through a gradient

expansion and calibrated using the spatial relaxation of velocity profiles observed under homogeneous

stresses. Both for frictional and frictionless grains, the relaxation length is found to diverge as the inverse

square root of the distance to the yield point, on both sides of that point.
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Granular materials belong to the class of amorphous
athermal systems. Like foams [1,2], emulsions [3], suspen-
sions [4–6], or metallic glasses [7], they exhibit a dynami-
cal phase transition between static and flowing states.
Analogously to phase transitions of thermodynamic sys-
tems, this rigidity transition exhibits a divergence of cor-
relation lengths [8,9], revealing the presence of nonlocal
cooperative processes called dynamical heterogeneities
[10]. In order to describe the constitutive behavior of
such systems, it is natural to adopt the Ginzburg-Landau
phenomenological approach of phase transitions [11–15].
The main issue is then to identify the relevant control and
order parameters. Following the now classical Liu-Nagel
diagram for a jamming transition [16]—or a revised ver-
sion [17]—it is usually assumed that the solid-liquid
mechanical transition is controlled by the shear stress �
[12–14], which, once rescaled by its critical value, defines
the yield parameterY. For a granular system sheared under
a fixed confining pressure P, one defines the dimensionless
Coulomb yield parameter Y ¼ �=ðP�cÞ, where �c is the
friction coefficient in the zero shear-rate limit, at the jam-
ming volume fraction �c.

In a series of recent papers [12–15,18] the order parame-
ter is a rheological quantity called the fluidity, proportional
to the inverse viscosity, i.e., to the ratio of the shear rate _�
to the shear stress �. Here, we consider that the relevant
order parameter must be a dimensionless quantity based
exclusively on state variables (which excludes �) like the
shear rate _� rescaled by a microscopic time scale. In
granular materials, the only energy scale is set by the
confining pressure P, so that the order parameter must be
the inertial number

I ¼ j _�jdffiffiffiffiffiffiffiffiffi
P=�

p ; (1)

based on the grain diameter d and on their density �. I
compares _� to the microscopic rearrangement time

d
ffiffiffiffiffiffiffiffiffi
�=P

p
. Considering an incompressible homogeneous

flow, it can be inferred that the yield parameter is a function
of I noted Y ¼ �ðIÞ=�c [19–21]. If this local constitutive
relation was still valid in heterogeneous flows, the transi-
tion between solid (I ¼ 0) and liquid (I > 0) states would
systematically occur at Y ¼ 1. However, different experi-
ments have shown that the stress at a location depends on
the shear rate around this point, a property called non-
locality. (i) In the inclined plane geometry, thin granular
layers flow anomalously [22] and stop at a yield parameter
Y > 1 [19,23]. (ii) A creeping flow is commonly observed
in regions which are expected to be jammed (i.e., solid),
since Y < 1 [19,24,25]. (iii) A solid plunged in grains and
submitted to a force lower than the yield threshold starts
moving as soon as a shear band is created far away from the
solid [26,27].
In this Letter, we show that the liquid state continuously

extends from liquid zones (Y > 1) into the bulk of regions
that are below the yield conditions (Y < 1). We further-
more find that the rheology obeys the very same nonlocal
constitutive relation across yield conditions.
Three different pictures have emerged so far to explain

nonlocality [28]. In soft amorphous systems, like foams,
emulsions or glassy Lennard-Jones phases, the dynamics in
the quasistatic regime is controlled by elastoplastic events
[12,29–31]: when sheared, energy is slowly stored and
rapidly released through scale-free avalanches, in close
analogy with the depinning transition of an elastic line.
By contrast, the dynamics of hard nondeformable grains is
essentially related to geometry: elementary plastic events
are rather identified as the rapid formation of force chains
followed by a slow zigzag instability of these structures
[32]. Nonlocality can then be related to soft modes, by
essence spread in space, prescribing the cooperative mo-
tion of the particles [33]. In this geometrical picture, the
relevant state parameter would rather be the mean number
of contacts per particle Z or the volume fraction � [34].
The third picture is based on an analogy with Eyring’s
transition state theory for the viscosity of liquids [35],
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where mechanical fluctuations would play the role of
temperature in thermal systems. Here, we show that the
nonlocal constitutive relation for dense granular flows can
be determined from simple phenomenological assump-
tions, regardless of the nature of the relevant dynamical
mechanisms. We calibrate and test it by means of discrete
element simulations.

Numerical setup.—We have performed molecular dy-
namics simulations of massive grains, confined in a shear
cell under an imposed stress field. The system is two-
dimensional and constituted of N ’ 2� 103 circular par-
ticles of mean diameter d, with a �20% polydispersity.
The shear cell is composed of two rough walls moving
along the x direction with opposite velocities [see Fig. 1(a)
for notations]. These walls are made of the same grains, but
glued together. The walls are separated by H þ 2� ’ 55d.
Their position is controlled to ensure a constant normal
stress Pw. The cell thickness then fluctuates over a fraction
of the grain diameter. Periodic boundary conditions are
applied along the x direction. The particle and wall dy-
namics are integrated using the Verlet algorithm. Contact
forces between particles are modeled as linear viscoelastic
forces, chosen such that the restitution coefficient is
e ’ 0:9. For each measurement reported here, we have
varied the normal spring constant kn and we report the
value of the plateau at large kn. This rigid asymptotic
regime is reached in practice for kn=P > 103. To model
actual granular samples, we have considered frictional
grains, which interact along the tangential direction by a
Coulomb friction [36–38] of coefficient �p ¼ 0:4, with a

tangential spring constant kt ¼ 0:5kn. For the sake of
comparison, we have also studied the same system with
frictionless grains (�p ¼ 0).

What makes the setup original is the possibility of
imposing the profile ofYðzÞ by means of gravitylike forces

applied to the grains located in two buffer zones [Fig. 1(a)]
of thickness � ¼ 5d. A grain labeled i, of mass mi, and

located at z ¼ zi is submitted to an external force: fiz ¼
mig½�e�ð½zi�ðHþ�Þ=2�2=2d2Þ þ e�ð½ziþðHþ�Þ=2�2=2d2Þ�, where g
is the amplitude of the localized ‘‘gravity’’ field. These
forces are oriented downward at the top of the cell, and
upward at the bottom [Fig. 1(a)]. The resulting pressure P
[Fig. 1(b)] starts from Pw at the upper wall, increases due
to the sum of forces applied in the buffer zone, and reaches
a constant value Pb in a central region of width H, called
the bulk. P decreases back to Pw at the lower boundary. By
contrast, the shear stress profile is homogeneous across the
cell [Fig. 1(b)]. As a result, the stresses are homogeneous
in the bulk of the shear cell: Y ¼ Yb. By tuning the
amplitude g, Yb can be imposed smaller or larger than 1.
Pw is chosen larger than �=�c so that the buffer zone
remains above yield conditions, at Y > 1.
Local rheology.—For given stress conditions, the simu-

lation is run until a steady state is reached and the averaged
velocity profiles are then measured. Figure 2 shows two
such profiles, one above and the other below yield con-
ditions. One observes that the entire system always flows,
even when Yb < 1. In the bulk, the velocity deviates from
the linear profile ux ¼ _�1z predicted by the local rheology
(as Y is constant, one expects I to be constant as well and
to vanish for Yb < 1). The velocity rather tends exponen-
tially towards such a linear profile, which suggests a linear
relaxation in space. The velocity profiles inside the bulk
zone (Fig. 2) are accordingly fitted with the function:

uxðzÞ ¼ _�1zþ uxðH=2Þ � _�1H=2

sinh½H=ð2‘Þ� sinhðz=‘Þ: (2)

The velocity uxðH=2Þ is inherited from the buffer layer,
while the asymptotic shear rate _�1 (which is not the shear
rate at the center of the cell) and the relaxation length ‘ are
two adjustable parameters. Varying Y in the buffer layer
but keeping Yb constant, we systematically measured the(a) (b)

FIG. 1 (color online). (a) Schematic of the numerical setup.
The walls, composed by the dark purple grains, are submitted to
a confining pressure Pw. In the buffer layers located close to the
walls, the grains (orange) are submitted to gravitylike forces
along the transverse direction z. (b) Schematic profiles of the
pressure P (black line) and of the shear stress � (red line) across
the cell. In the bulk of the shear cell (white), the pressure is
homogeneous: P ¼ Pb.
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FIG. 2 (color online). (a) Typical profiles of the yield parame-
ter Y obtained numerically below (red squares, Yb < 1) and
above (blue circles, Yb > 1) yield conditions for frictional
grains. (b) Corresponding velocity profiles. Green dashed lines:
Predictions of the local rheology. Black solid lines: Best fits by
Eq. (2).
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same values of _�1 and ‘. These two quantities characterize
the bulk state and do not depend on the buffer layer
characteristics.

The asymptotic shear rate _�1 provides the proper way of

defining the local rheology �ðIÞ. I ¼ j _�1jd=
ffiffiffiffiffiffiffiffiffi
P=�

p
is

indeed the inertial number selected for a certain ratio
�=P in homogeneous shear and stress conditions. It is
deduced in practice from the fit of the data to Eq. (2).
The resulting constitutive relations are reported in Fig. 3
for the frictional and the frictionless case. In both cases, the
data are perfectly described by a law of the form

� ¼ �c þ bI� (3)

in the accessible range of I (between 10�4 and 10�1): the
residuals form a statistical noise. The exponent � is 0.5 in
the frictionless case and 1 in the frictional case, within
error bars (� 5%); see also [20,39]. We hypothesize that
this difference is related to another fundamental difference
between the two systems. In the frictionless situation, the
jamming point (I ¼ 0 and � ¼ �c) coincides with the
isostatic point, while for frictional grains, the jamming
point is far in the hyper static zone [8,34].
Nonlocal rheology—The relaxation length ‘ is dis-

played in Fig. 4 as a function of Yb. The numerical data
for both frictionless and frictional systems are qualitatively
similar: ‘ diverges on both sides of the critical pointYb¼1
with an exponent 1=2. In order to account for nonlocal
effects in the theoretical constitutive relation, we perform a
gradient expansion of the functional Y½I�. Assuming that
nonlocality results from a statistically isotropic short-range
interaction between shear zones, the lowest order operator
is the Laplacian r2I. As a direct consequence, I and its
gradient must be continuous. Furthermore, we assume that
the correction remains finite as I ! 0, so that the expan-
sion must be expressed in terms of � � d2ðr2IÞ=I. At the
linear order in �, the constitutive relation writes

Y ¼ �ðIÞ
�c

½1� ���; (4)

where � is a phenomenological constant. � is positive
when the point considered is surrounded by a more liquid
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FIG. 3. Local rheology �=P ¼ �ðIÞ deduced from the fit of the
bulk velocity profile to Eq. (2). Data for frictionless (a) and
frictional (b) grains. Solid lines: The best fit to Eq. (3) gives
�c ¼ 0:094, � ¼ 0:5, b ¼ 0:518 for the frictionless case and
�c ¼ 0:267, � ¼ 1:0, b ¼ 1:148 for the frictional one. Bottom:
�=P��c as a function of I in log scales for the frictionless (c)
and frictional (d) cases.
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FIG. 4 (color online). (a) Relaxation length ‘ as a function ofYb, below (circles) and above (squares) yield conditions. (a) Green and
yellow symbols: Data for frictionless grains. (b) Blue and red symbols: Data for frictional grains. The solid lines are the best fit by
Eqs. (5) and (6). The values of � found for frictionless (� ¼ 7:83� 0:21) and frictional (� ¼ 8:08� 0:49) systems are remarkably
similar. Inset of (a) and (b) log-log plots of the same quantities, revealing the divergence with an exponent �1=2.
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region (higher I). This region flows more easily than
expected from the local value of I, so that the correspond-
ing shear stress is lower. � is therefore positive.
Importantly, our derivation does not depend on the nature
of the mechanical interaction between shear zones; the
reader may think of the analogy with the van der Waals
gradient expansion of the Helmholtz free energy at a
liquid-vapor interface [40].

Above yielding conditions, the linearization of Eq. (4)
around the bulk inertial number I ¼ Ib þ 	I gives at first
order a differential equation of the form ‘2ðd2	I=dz2Þ �
	I ¼ 0, whose solutions are exponentials with a relaxation
length

‘> ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yb�

�ðYb � 1Þ

s
for Yb > 1: (5)

Below yielding conditions, as Ib ¼ 0, the nonlocal correc-
tion is of zeroth order and Eq. (4) leads to � ¼
ð1�YbÞ=�. This gives a similar differential equation but
now with a divergence of the form

‘< ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

1�Yb

s
for Yb < 1: (6)

As shown in Fig. 4, the measured relaxation length ‘
effectively diverges on both sides of the critical point
according to the theoretical predictions [Eqs. (5) and (6)].
In particular, both frictional and frictionless systems ex-

hibit a power-law divergence as�jYb � 1j�1=2; the multi-
plicative factor is the same above and below Yb ¼ 1 for
the frictional case but differ by

ffiffiffiffi
�

p
in the frictionless case

[insets of Figs. 4]. Note that a similar scaling was found in
[12] for a fluidity correlation length in a kinetic elasto-
plastic model.

Discussion.—It must be emphasized that the creeping
regime (Y < 1) and in the fully flowing regime (Y > 1) are
described as a single liquid phase. The divergence of the
relaxation length is indeed predicted across the yield con-
dition by the very same nonlocal correction to the liquid
constitutive relation. Because of the liquid boundary con-
dition imposed by the buffer layers, the bulk is always
found flowing, regardless of the stress in this zone. The
liquid state persists asymptotically into the bulk, far from
any direct influence of the boundary. This is consistent with
our choice of order parameter: I is everywhere nonzero and
the same constitutive relation holds in all layers. In con-
clusion, the liquid-solid transition is not controlled by Y.
ForY smaller than the static threshold valueYs the system
can be solid or fluid. If fluid, then I varies in space
according to the nonlocal rheology. If solid, the stress state
must be described by another constitutive relation based on
elasticity.

Our derivation, based on a gradient expansion of the
yield parameter Y½I�, written as a functional of the order
parameter I, does not prejudge of any dynamical

mechanisms at work at the microscopic level. The expo-
nential behaviors and the associated length scales hence
identified are direct consequences of the linearization
around the critical state. Therefore, finer investigations at
the grain level must be carried out to understand the con-
nections between the three lines of thought currently
invoked to explain such a nonlocal rheological coupling,
namely, elastoplastic [12,29–31], geometrical [8,32], and
stress-mediated activation [26,35].
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