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We present a novel approach allowing the study of rare events like fixation under fluctuating environ-

ments, modeled as extrinsic noise, in evolutionary processes characterized by the dominance of one

species. Our treatment consists of mapping the system onto an auxiliary model, exhibiting metastable

species coexistence, that can be analyzed semiclassically. This approach enables us to study the interplay

between extrinsic and demographic noise on the statistics of interest. We illustrate our theory by

considering the paradigmatic prisoner’s dilemma game, whose evolution is described by the probability

that cooperators fixate the population and replace all defectors. We analytically and numerically

demonstrate that extrinsic noise may drastically enhance the cooperation fixation probability and even

change its functional dependence on the population size. These results, which generalize earlier works in

population genetics, indicate that extrinsic noise may help sustain and promote a much higher level of

cooperation than static settings.
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Understanding the origin of cooperative behavior and
how it is influenced by the population’s intrinsic properties
and by environmental factors are major scientific puzzles
[1] that are suitably investigated in the framework of evolu-
tionary game theory (EGT) [2]. In EGT, successful species
with a high reproductive potential (fitness) spread, and the
optimization of the fitness at an individual level can result
in the reduction of the population’s overall fitness, a phe-
nomenon suggestively captured by the prisoner’s dilemma
(PD) game [1,2]. While in EGT the dynamics is tradition-
ally studied in terms of differential equations, demographic
fluctuations—intrinsic noise (IN)—are known to affect the
evolution in finite populations. In this case, the dynamics is
often described by a Markov chain and characterized by
the fixation probability of a given trait (or ‘‘pure strategy’’),
which is the probability that the trait invades the entire
population [3]. For the classic PD (with IN only), the
cooperation fixation probability (CFP) vanishes exponen-
tially with the population size (see, e.g., [4]), and defection
prevails, leading to a cooperation dilemma. This predic-
tion, at odds with many experimental observations, has
motivated the investigation of various mechanisms that
can promote and sustain cooperation [5].

Besides IN, an important source of fluctuations in such
systems is extrinsic noise (EN) mostly due to the inherent
environmental fluctuations and from being coupled to
other fluctuating systems. Such EN can be aptly modeled
in the form of random fluctuations in one or more interac-
tion parameters. In theoretical population genetics [3,6–8],
ecology [9–11], and cellular biology [12], it has been
shown that the combined effect of IN and EN can signifi-
cantly affect the lifetime of the long-lived metastable
coexistence state the system dwells in prior to escape.

In this work, we go beyond these and other works that
focused on systems exhibiting metastability and present a
novel approach that allows us to analyze the combined
influence of IN and EN, with arbitrary correlation time,
magnitude, and statistics, in systems characterized by the
dominance of one species instead of metastability. This is
done by a suitable mapping onto an auxiliary model pos-
sessing a long-lived metastable state and by treating the
latter semiclassically. We illustrate our approach on the
prototypical example of the PD game. We show that EN
can drastically enhance the CFP and may even change its
functional dependence on the population size. These
results may be interpreted as the evolutionary signature
of noisy environments on population diversity [13].
The paradigm of social dilemma is provided by the

classic PD, whose main features are captured by assuming
that the pairwise interaction between cooperators and
defectors is described in terms of the benefit b and cost c
of cooperation, with b > c > 0 [2]. Here, mutual coopera-
tion leads to a payoff b� c > 0 and mutual defection
gives a payoff 0, while when one player defects and the
other cooperates, the former gets a payoff b and the latter
gets �c. The quantity r � c=b is the cost-to-benefit
ratio [2], and the dilemma arises from the fact that,
while r < 1 and mutual cooperation enhances the
population overall payoff, each individual is better off
defecting.
We consider a finite and well-mixed population of size

N � 1, with n cooperators and N � n defectors. At the
mean field level (N ! 1), defection always prevails
and the fraction x � n=N of cooperators evolves to extinc-
tion, x ¼ 0, according to the replicator rate equation
ðd=dtÞx � _x / xð1� xÞ½�CðxÞ ��DðxÞ�. �C ¼ bx� c
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and �D ¼ bx are the cooperator and defector average
payoffs, respectively [2], and we assume that b, c ¼ Oð1Þ.

When the population size is finite, demographic fluctua-
tions always drive the system to either of the absor-
bing states n ¼ 0 or n ¼ N, and the stochastic
dynamics is described by the master equation _Pn ¼
Tþ
n�1Pn�1 þ T�

nþ1Pnþ1 � ðTþ
n þ T�

n ÞPn, where Tþ
n and

T�
n are the respective birth and death rates. As often, these

are given in terms of the Moran model [2,4,14,15]:
Tþ
n ¼ ½fCðnÞ= �fðnÞ�nðN � nÞ=N2 and T�

n ¼ ½fDðnÞ=
�fðnÞ�nðN � nÞ=N2, where the cooperator and defector
fitnesses are

fCðnÞ ¼ 1þ s½bn=N� c� and fDðnÞ ¼ 1þ sbn=N; (1)

and the population average fitness is �f¼1þsðb�cÞn=N.
In Eq. (1), the term 1 accounts for a baseline fitness
contribution, and the selection strength is denoted by
s > 0 [2,15,16]. While our approach applies to arbitrary
selection strength, throughout the Letter we focus on the
biologically relevant limit of weak selection, s � 1 [3,15],
which ensures that fC=D > 0 in Eq. (1).

Furthermore, it is convenient to work in the regime

where s � N�1=2. In this regime, one can accurately ap-
proximate the master equation by a Fokker-Planck equa-
tion (FPE) [16,17] for the probability Pðx; tÞ of having
cooperator density x at time t [3,18]:

@tPðx; tÞ ¼ �@x½AðxÞPðx; tÞ� þ 1=ð2NÞ@2x½BðxÞPðx; tÞ�;
(2)

where AðxÞ ¼ TþðxÞ � T�ðxÞ �OðsÞ, giving a relaxation
time / s�1, BðxÞ ¼ TþðxÞ þ T�ðxÞ, and T�ðxÞ ¼ T�

n .
An important notion to characterize evolutionary

dynamics is the CFP �Cðx0Þ—the probability that coop-
eration fixates starting from an initial fraction x0 of coop-
erators. In the absence of EN, �Cðx0Þ can be calculated
exactly [4,19], and one finds in the leading exponential

order �Cðx0Þ � e�Nscð1�x0Þ. Here, we purposely adopt an-
other route and show how to asymptotically calculate
�Cðx0Þ via an auxiliary problem. For this, we consider
the modified model obtained by supplementing the original
PD system with a reflecting boundary at n0 ¼ Nx0 by
imposing T�

n¼n0 ¼ 0. Hence, the only absorbing state of

the modified model is the state n ¼ N. Therefore, as _x ¼
AðxÞ< 0 for any 0< x < 1, a quasistationary distribution
(QSD) peaked at x0 (for any value of x0) forms after an
Oðs�1Þ relaxation time. This metastable state, however,
slowly decays due to a slow leakage of probability into
the absorbing state at x ¼ 1, with a rate given by the
inverse of the cooperation mean fixation time (MFT).

By employing the metastable ansatz Pðx; tÞ ’ �ðxÞe�t=�

in Eq. (2), where �ðxÞ is the QSD, the MFT � of the
auxiliary model can be computed by using the semiclassi-

cal ansatz �ðxÞ � e�NSðxÞ. Here SðxÞ is called the action
function, while pxðxÞ � S0ðxÞ is the momentum [20,21].

This yields a stationary Hamilton-Jacobi equation,
Hðx; pxÞ ¼ 0, with Hamiltonian Hðx; pxÞ ¼ pxAðxÞ þ
ðp2

x=2ÞBðxÞ. Fixation occurs along the zero-energy trajec-
tory pxðxÞ ¼ �2AðxÞ=BðxÞ, where pxðxÞ �OðsÞ � 1.
This gives SðxÞ ¼ R

pxdx ¼ ðc=bÞ lnð2� csþ 2bsxÞ,
from which the QSD at x > x0, �ðxÞ � e�N½SðxÞ�Sðx0Þ�, is
found. Since �� �ð1Þ�1, we have [20,22]

ln� ’ N½Sð1Þ � Sðx0Þ� ’ Nscð1� x0Þ; (3)

where this result is valid when Ns � 1, which ensures a
long-lived metastable state [16]. Importantly, we find that

for N�1 � s � N�1=2 the MFT �of the modified problem
(3) coincides to leading order with the inverse of the CFP in
the original PD model [4,18]. We now use this finding to
study the CFP in the presence of EN.
To this end, we incorporate EN in the form of one or

more fluctuating parameters. For concreteness we take a
fluctuating selection strength s ! sðtÞ ¼ s0 þ �ðtÞ. By
directly affecting the fitness ofC=D individuals, this choice
is particularly relevant in population genetics [3,6–8,23],
ecology [24], and cellular biology [13]. Here, � is taken as
an Ornstein-Uhlenbeck process with mean zero, variance

h�ðtÞ�ðt0Þi¼�2e�jt�t0j=�c , and correlation time �c > 0
[19,25]. We assume that � is arbitrary so that sðtÞ can
become negative for � ¼ Oðs0Þ. The Ornstein-Uhlenbeck
process satisfies the following Langevin equation:

_� ¼ ��=�c þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2=�c

q
�ðtÞ; (4)

where �ðtÞ is white Gaussian noise h�ðtÞ�ðt0Þi ¼ �ðt� t0Þ
[26].
We now proceed as in the absence of EN and compute �

of the modified PD model supplemented with a reflecting
boundary at x0. We have numerically confirmed (see
Supplemental Material [27] for details) that, for Ns0�1,
�Cðx0Þ and ��1 exhibit the same asymptotic behavior in
the original and modified models also in the presence of
EN; see Fig. 1.
To account for the joint effects of IN and EN, we couple

Eq. (4) with FPE (2) and arrive at the following bivariate
FPE for the probability Pðx; �; tÞ to find cooperator density
x and selection strength s ¼ s0 þ � at time t:

@tPðx; �; tÞ ¼ ½�@xAþ @�ð�=�cÞ�Pðx; �; tÞ
þ ð2NÞ�1½@2xBþ ð2V=�cÞ@2��Pðx; �; tÞ: (5)

Here, A¼Aðx;�Þ¼Tþðx;�Þ�T�ðx;�Þ and B¼Bðx;�Þ¼
Tþðx;�ÞþT�ðx;�Þ read, for s � 1,

Aðx; �Þ ’ �xð1� xÞcðs0 þ �Þ½1� ðb� cÞðs0 þ �Þx�;
Bðx; �Þ ’ 2xð1� xÞ½1þ cðs0 þ �Þðx� 1=2Þ�; (6)

and we have defined V � N�2. For N � 1, we can use the

semiclassical ansatz for the QSD �ðx; �Þ � e�NSðx;�Þ in
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Eq. (5), which yields the Hamilton-Jacobi equation
Hðx; �; px; p�Þ ¼ 0 with Hamiltonian

H ¼ pxAðx; �Þ � p��=�c þ ðp2
x=2ÞBðx; �Þ þ ðV=�cÞp2

�;

(7)

where we have defined px ¼ @xS and p� ¼ @�S. The

corresponding Hamilton equations are

_x ¼ @px
H ¼ Aþ pxB;

_px ¼ �@xH ¼ �px½@xAþ ðpx=2Þ@xB�;
€� ¼ �=�2c � 2ðV=�cÞpx@�Aðx; �Þ;

(8)

where the third equation has been obtained by combining

the equations for _� and _p� into a single equation and by

keeping terms up to OðpxÞ ¼ Oðs0Þ; see below. The
solution to the Hamilton-Jacobi equation for generic EN
(with arbitrary �c) is found by solving numerically Eq. (8),
yielding the action function Sðx; �Þ ¼ R

pxðx; �ÞdxþR
p�ðx; �Þd� [28]. Here, we focus on two important and

analytically amenable regimes: short-correlated (white)
EN, when �c � s�1

0 , and long-correlated (adiabatic) EN,

when �c � s�1
0 .

For short-correlated EN, �c � s�1
0 , we find that €� is

negligible in the third of Eq. (8) [29], yielding the effective
noise strength � ’ �eff ’ �2cV�cpxxð1� xÞ [10,12,30].
Since px > 0 (see below), �eff < 0; thus, EN is exploited
to enhance the CFP by decreasing the selection strength.

Substituting �eff into the first of Eq. (8), one finds
_x ¼ �xð1� xÞ½cs0 � 2pxf1þ c2�cVxð1� xÞ þOðs0Þg�.
It appears that EN markedly affects the dynamics when
its magnitude satisfies V�c � Oðs0Þ. In this regime the
corresponding effective white-noise Hamiltonian is
Hðx; pxÞ ’ �xð1 � xÞpx½cs0 � pxf1 þ c2�cVxð1 � xÞg�.
Solving H ¼ 0, we find px ¼ cs0=½1þ c2�cVxð1� xÞ�.
This yields the MFT in the modified model and, therefore,
the CFP of the original PD model:

ln�Cðx0Þ’�N
Z 1

x0

cs0du

1þc2V�cuð1�uÞ¼� Ns0
c�cV�

� ln

�
½1þc2�cVð1þ�Þ=2�

�
�þ1�2x0
��1þ2x0

��
; (9)

where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4=ðc2�cVÞ

p
. In Fig. 2, we compare Eq. (9)

with numerical simulations as a function of the relative EN
strength �=s0 and find a very good agreement for both
x0 ¼ Oð1Þ (left panel) and x0 � 1 (right panel). One can
clearly see that EN, by effectively decreasing the selection
strength s, enhances the CFP compared to the IN-only
case with � ¼ 0 (see also Fig. 3 and Fig. S2 of [27], where
we respectively plot the CFP versus N and �c).
For a given short-correlated EN, �c � s�1

0 , there are two

interesting limits to (9): (i) strong and (ii) weak EN. (i) The
most striking effect of EN appears in the limit of strong
EN, V�c � 1, which yields � ! 1. Here, for finite values
of x0 > 0, the dependence of �Cðx0Þ on N becomes a

power law, and Eq. (9) gives way to �Cðx0Þ �
½Nð�cÞ2�cð1� x0Þ=x0��ðs0=�2Þ=ðc�cÞ. This result is con-
firmed by numerical simulations; see Fig. 3. (ii) For weak
EN, V�c � 1, Eq. (9) can be approximated as ln�Cðx0Þ ’
�Ns0cð1� x0Þ½1� ð1=6Þc2V�cð1� x0Þð2x0 þ 1Þ�, which
coincides with the IN-only result to leading order.
The behavior of Eq. (9) for a small initial density of C’s

(x0 � 1) is particularly relevant in EGT [2]. In this case,
for arbitrary EN strength and x0 ! 0, the CFP is

ln�ð0Þ
C ’ �½2Ns0=ðc�cV�Þ� lnf1þ c2�cVð1þ �Þ=2g:

(10)

Again, for strong EN, V�c � 1, Eq. (10) becomes a power

law �ð0Þ
C ’ ½Nð�cÞ2�c��2ðs0=�2Þ=ðc�cÞ [31].

Note that, while Eq. (9) has been formally derived in the

regime s � N�1=2, its predictions also hold when Ns20 ¼
Oð1Þ with s0 � 1, as illustrated by the numerical results in
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FIG. 2 (color online). �C versus relative EN strength �=s0 in
the short-correlated EN regime. The solid line is from Eq. (9),
and the symbols are numerical simulations. Here, s0 ¼ 0:01,
b ¼ 1:25, and c ¼ 1, and N ¼ 2000, �c ¼ 25, and x0 ¼ 0:25 in
the left panel, while N ¼ 1750, �c ¼ 20, and x0 ¼ 0:1 in the
right panel. The agreement slightly improves from the left to
right panels as the inequalities Ns20 � 1 and �cs0 � 1 are better
satisfied.
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FIG. 1 (color online). �C versus 	��1 for intermediate EN,
�=s0 ¼ 0:3 (cross and downward triangle), and strong EN,
�=s0 ¼ 1 (open circle and upward triangle). The solid line
is the analytical result for �C with IN only. Here s0 ¼ 0:01,
b ¼ 1:25, c ¼ 1, N ¼ 1500, and �c ¼ 20. The proportionality
factor 	 varies slowly with the model parameters (35.3 for
intermediate and 55.1 for strong EN).
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Fig. 3. This is because the leading correction to�Cðx0Þ due
to EN is independent of s0 when V�c � Oðs0Þ [see the
denominator of the integrand of (9)]. Thus, our results due
to EN are applicable as long as s0 � 1 and are expected to
hold also in the non-FPE regime where Ns20 * Oð1Þ [27].

The case of long-correlated EN, �c � s�1
0 , is investi-

gated in the Supplemental Material [27]. In this case, for
weak EN, V < s0, we find that ln�Cðx0Þ ’ �Ncs0ð1�
x0Þ½1� ðc=s0ÞVð1� x0Þ�. Under strong EN, V > s0, the
intrinsic fluctuations are negligible [12] and �Cðx0Þ is
solely governed by Eq. (4), yielding �Cðx0Þ � ��1

c ; see
Supplemental Material [27] for the details. In addition, the
latter contains a summary of the various EN parameter
regimes for fluctuating sðtÞ and a parameter diagram; see
Fig. S1 in [27].

For completeness, we have also considered the case of
external fluctuations in the cost-to-benefit ratio r ¼ c=b,
with r ! rðtÞ ¼ r0 þ �ðtÞ and r0 < 1 [where r0 �Oð1Þ].
In this case, the dynamics of � is given by (4) with

h�ðtÞ�ðt0Þi ¼ �2
re

�jt�t0j=�c , where Vr � N�2
r . In addition,

we assume �r � r0 to guarantee 0< rðtÞ< 1 and that b is
fixed so that cðtÞ ¼ brðtÞ fluctuates. Performing the calcu-
lations along the same lines as for fluctuating sðtÞ, we find
for short-correlated EN, �c � s�1:

ln�Cðx0Þ ’ �N
Z 1

x0

sbr0du

1þ ðsbÞ2Vr�cuð1� uÞ : (11)

Similarly as before, for strong EN, s2Vr�c � 1, Eq. (11)
also predicts that �Cðx0Þ decays algebraically with N.

Our approach generalizes earlier works in population
genetics where the combined role of IN and EN was
investigated by considering a fluctuating selection
strength; see, e.g., [3,6–8,23]. In these studies the dynam-
ics was implemented with the Wright-Fisher model with
discrete time and nonoverlapping generations [3]. In such a
setting, a diffusion theory was devised in the weak selec-
tion limit to account for IN and time-uncorrelated (white)
EN by averaging separately on the two sources of noise
[3,6–8]. When N�2 & Ns20 � 1, the results of this

approach coincide with Eq. (9) for �c ¼ 1 and N ! N=2
[32]. Yet, our approach is more general, since it allows us
to study ENwith arbitrary correlation time and statistics, as
well as in the presence of frequency-dependent selection.
In this work, we have analyzed the fixation properties of

evolutionary processes characterized by the dominance of
one species. Our approach relies on a semiclassical treat-
ment applied to an auxiliary model exhibiting metastabil-
ity. This allows us to study how fixation is affected by the
interplay between intrinsic and extrinsic noise. Our theory
is general in the sense that it can deal with EN of arbitrary
statistics, correlation time, and magnitude, with one or
multiple fluctuating parameters, and can be also used for
systems exhibiting metastable coexistence. Using the pro-
totypical prisoner’s dilemma game, we have shown that EN
is exploited to effectively reduce the selection strength and,
thereby, to drastically enhance cooperation, whose fixation
probability is otherwise vanishingly small. This indicates
that EN may be vital in sustaining a certain level of
cooperation and population diversity by effectively oppos-
ing single-type dominance, as reported in recent microbial
experiments [13]. Therefore, EN may contribute to recon-
cile the theoretical predictions with observed examples of
cooperative behaviors.
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