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2Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, F-13013 Marseille, France
(Received 2 June 2013; published 5 December 2013)

We propose a concept that allows for efficient excitation of surface plasmon spolaritons (SPPs) on a thin

graphene sheet located on a substrate by an incident electromagnetic field. Elastic vibrations of the sheet,

which are generated by a flexural wave, act as a grating that enables the electromagnetic field to couple to

propagating graphene SPPs. This scheme permits fast on-off switching of the SPPs and dynamic tuning of

their excitation frequency by adjusting the vibration frequency (grating period). Potential applications

include single molecule detection and enhanced control of SPP trajectories via surface wave patterning of

graphene metasurfaces. Analytical calculations and numerical experiments demonstrate the practical

applicability of the proposed concept.
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Graphene is a honeycomb crystal of carbon atoms,
which was first isolated by Novoselov et al. in 2004 [1].
Investigations of its electrical and mechanical properties
have subsequently confirmed that it is a revolutionary
material with promising applications in various fields of
applied physics and engineering [2]. Graphene’s ultrahigh
carrier mobility, excellent thermal stability, and unusual
carrier-density-dependent surface conductivity [3] make it
a promising building block for various and ubiquitous
devices operating at terahertz (THz) and infrared (IR)
frequencies [4]. The high absorption of white light by an
atomically thin sheet of graphene led to the design of
various photonic devices for light modulation or photo-
detection [5,6]. More recently, graphene has been shown to
support propagation of guided surface electromagnetic
waves at its interface with a dielectric, so-called graphene
surface plasmon polaritons (GSPPs). GSPPs have longer
propagation lengths compared to metallic SPPs [7].
Additionally, their characteristics can be tuned through
chemical doping or by applying an external gate voltage
to the graphene sheet. These unusual properties combined
with the need for tunable photonic or plasmonic devices
working over a broad band of frequencies have fueled
research on graphene. Consequently, it has recently been
used in building THz antennas [8–10], plasmonic wave-
guides [11], transformation-optics devices [12,13], perfect
absorbers [14,15], and sensors [16].

However, to further exploit all potential avenues opened
by graphene’s unprecedented interaction with electromag-
netic fields, methods for efficiently exciting GSPPs must
be developed. This is a challenging task due to the strong
mismatch between wave numbers in graphene and free
space at THz and IR frequencies [17]. To this end, several
approaches, including use of nano- and microribbons [7] or
more classical schemes such as the Otto-Kretschmann
configurations [18], have been proposed. Additionally, it

has been demonstrated in [19,20] that GSPPs can be ex-
cited using highly localized fields that are generated by
metal near-field probes acting as nanoantennas. However,
these methods are limited by excitation of highly localized
GSPPs.
In this Letter, we propose a concept that exploits peri-

odic diffraction gratings generated on a thin graphene
sheet, which would enable efficient excitation of propagat-
ing GSSPs by an incident electromagnetic field at THz and
IR frequencies [21]. It is well known that periodic corru-
gations on metallic surfaces lead to a matching condition
necessary to generate SPPs for various frequencies and
angles of arrival of the exciting electromagnetic field.
Similar ideas apply to excitation of propagating GSSPs
[22]. Recent studies have analyzed the effect of periodicity
in the permittivity of the dielectric substrate supporting a
thin planar graphene sheet but not the periodicity in the
topography of the sheet itself [23].
Our proposal, which exploits surface elastic waves to

produce gratings from a thin graphene sheet, is described
schematically in Fig. 1. A sheet of carbon atoms of thick-
ness � is located on a substrate with permittivity "d ¼ 2:25
and excited from one end by a mechanical vibrator.
Graphene’s Young modulus E exceeds by far that of all
known materials (including steel) [24] and � is very small
(� < 1 nm). These make it possible to model elastic vibra-
tions of the graphene sheet in the transversal direction by
the scalar biharmonic equation ð�2 � �4

b þ �=DÞW ¼ q,
where W, q, �b, and D represent the displacement field,
source of vibrations (a concentrated point or line force), the
flexural wave number, and the flexural rigidity, respec-
tively [25]. The coefficient � accounts for the stiffness of
the substrate, which is modeled as a Winkler foundation
exerting an additional reaction force��W on the thin plate
[26]. This implies that the above biharmonic equation
can be recast into a simpler one defining a new parameter

PRL 111, 237404 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

6 DECEMBER 2013

0031-9007=13=111(23)=237404(5) 237404-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.237404


~�4
b ¼ �4

b � �=D: ð�2 � ~�4
bÞW ¼ q. Elastic waves that

satisfy this biharmonic equation without the source (i.e.,
q ¼ 0) and the reaction force from the substrate (i.e.,
� ¼ 0) are the acoustic phonon modes of the honeycomb
crystal and their propagation constant satisfies the disper-

sion relation �2
b ¼ !b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
��=D

p
. Here !b is the vibration

frequency, � is the density, and the flexural rigidity is given
by D ¼ E�3=½12ð1� �2Þ�, where � is the Poisson coeffi-
cient [26,27]. The elastic wave generated on the graphene

sheet has a wavelength �b ¼ 2�=Reð ~�bÞ (inset of Fig. 1).
Figure 2(a) plots the normalized dispersion relation of the

bending modes of the graphene sheet along the first
Brillouin zone �XM for � ¼ 0:3 nm, � ¼ 2300 kg=m3,
E ¼ 1012 Pa, � ¼ 0:2, and D ¼ 2:34� 10�18 Pam3 [24].
The inset shows the profile of W within the unit cell (the
arrows showing the flow of elastic energy). From the
dispersion relation in Fig. 2(a), it can be seen that �b ¼
250 nm when the flexural wave frequency !b=ð2�Þ is
around 195 MHz.
For electromagnetic analysis at THz and IR frequencies,

this flexural wave of a graphene sheet can accurately be
modeled as a static grating with period�b and is utilized to
couple incident electromagnetic fields to propagating
GSPPs. Electromagnetic wave interactions on the gra-
phene grating are analyzed using the finite-element-
method (FEM) [28]. It should be noted here that quantum
effects are ignored in the electromagnetic simulations
owing to the lateral dimensions of our structure (Fig. 1):
It was shown in [29] that plasmons generated on structures
with lateral dimensions larger than 10 nm could be
treated using the classical electromagnetic theory.
Graphene’s complex dielectric permittivity is modeled
using "V;G � 1þ j�intra=�"0! � �!2

G;p=!ð!þ j��1Þ
[9,17]. Here, �intra is the intraband conductivity, !G;p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2EF=�"0�@

2
p

is the effective plasma frequency,EF is the
Fermi energy, � is the intrinsic relaxation time and
assumed to follow the relation � ¼ 	EF=ðev2

FÞ (that
accounts for variation of loss with Fermi energy), e is the
electronic charge, and @ is the reduced Planck constant,
vF ¼ c=300 the Fermi velocity (c is the speed of light)
and 	 ¼ 15 000 cm2 V�1 s�1 is the measured dc mobi-
lity [30,31]. As pointed out in recent papers [9,12],
when Reð"V;GÞ< 0, graphene sustains the propagation of

transverse magnetic (TM) plasmon modes that
possess very high confinement. The dispersion relation

associated with these modes is given by �SPP ¼
�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½ð1þ "dÞ=ð�
0"0"V;G!Þ�2

q
, where �SPP is the

GSPP’s wave number, �0 and 
0 are the wave number
and impedance in free space, respectively, and "d is the
permittivity of the dielectric substrate. Figure 2(b) com-
pares�SPP computed for EF ¼ 0:7 eV to�0 in logarithmic
scale. It is clear that there is a very strong mismatch
between these wave numbers; they are separated with
nearly 2 orders of magnitude. The salient consequence is
that it is virtually impossible to excite GSPPs directly by
electromagnetic fields originating in free space. In this
work, this limitation is overcome by bending the graphene
sheet using flexural waves as described next.
The period of the grating,�b, (generated by the bending

flexural wave), �0 and �SPP satisfy the relation

Re ½�SPP� � �0 sin� ¼ ~�b ¼ 2�N=�b; (1)

which is obtained through phase matching at the interface
between the graphene and free space. Here, � is the angle
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FIG. 2 (color online). (a) Dispersion relation of the flexural
mode. The horizontal axis is the projection of the Bloch vector
on the boundary of the first irreducible Brillouin zone �XM. The

vertical axis is the square of the flexural wave number �2
b ¼

!b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
��=D

p
with � ¼ 0:3 nm, � ¼ 2300 kg=m3, and D ¼

2:34� 10�18 Pam3. The inset shows a snapshot of the vertical
displacement fieldW in the unit cell and the arrows represent the
energy flow of elastic power. (b) Dispersion relation of the GSPP
with EF ¼ 0:7 eV and dispersion relation of an electromagnetic
wave in surrounding space. The inset shows the geometry of the
thin graphene sheet lying on top of a dielectric substrate (silicon)
of permittivity "d ¼ 2:25.

FIG. 1 (color online). Geometry under investigation: a thin
graphene sheet on top of a substrate is simultaneously excited
by a biharmonic plane wave with wave number �b and an
electromagnetic field with wave number �0. The inset shows
the graphene patterned as a sinusoidal grating. The thick red arrow
indicates propagating GSPPs with wave number �SPP � �0.
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of arrival of the incident field and N is an integer that
denotes the grating mode order. Inserting the expression of
�SPP into Eq. (1) and exploiting the fact that �SPP � �0

yields the following equation in frequency !

!2 ¼ e2EF

@
2"0ð1þ "dÞ

�
2N

�b

þ! sin�

�c

�
: (2)

This nonlinear equation has two solutions. Let the posi-
tive solution be represented by !res; clearly !res is the
frequency at which the GSPP can be excited by the incident
electromagnetic field. It is expected that at these frequen-
cies, the absorption spectrum will have peaks since the
incident field’s energy is coupled to the GSSP and is
propagated on the surface of the graphene.

To demonstrate that GSSPs are indeed generated at
frequency !res, numerical electromagnetic simulations
of the setup shown in Fig. 1 excited by a normally incident
plane wave (� ¼ 0) with magnetic field along the
z direction (Hz) are carried out. For these simulations,
EF ¼ 1 eV, !b=ð2�Þ ¼ 195 MHz, and �b ¼ 250 nm.
Figure 3(a) plots the absorption, transmission, and

reflection spectra. Two peaks occurring at 51 and 72 THz
are clearly identified. An analytical solution of Eq. (2) for
N ¼ 1 and N ¼ 2 indeed confirms that the vibrating gra-
phene sheet sustains GSPPs propagating at these frequen-
cies. The first one is the fundamental mode (N ¼ 1) and is
dominant with absorption reaching 45%; it is also associ-

ated with the excitation of the GSPP with Reð ~�SPPÞ ¼
2�=�b. The absorption of the second mode (N ¼ 2)
reaches almost 20% (two and a half times less); it is

associated with the GSPP with Reð ~�SPPÞ ¼ 4�=�b.
Figure 3(b) plots the distribution of electric and magnetic
fields norms for the N ¼ 2 mode and Figs. 3(c) and 3(d)
plot field norms and several field components for the
N ¼ 1 mode. These figures clearly show the structure of
these modes: the norm of the electric field plotted along the
grating sinusoidal boundary shows a 2� periodicity for the
fundamental mode and 4� for the other one. A strong
enhancement of electromagnetic fields is observed particu-
larly for the fundamental mode where the absorption
reaches 45%. Figure 3(a) shows that without the GSPPs
being excited, the absorption is less than 1% (at frequen-
cies excluding 51 and 72 THz). This means that the GSPPs
are responsible for absorption of about 45% of the incident
electromagnetic field’s energy. It is worth mentioning at
this stage that this value is in actuality the upper limit for a
thin symmetric layer as pointed out in [14]. One possible
way of increasing further the absorption by the graphene
gratings is to add a reflecting layer below our design; this
would result in the cancellation of the transmission channel
and at the GSPP resonances, all of the incident energy will
be absorbed by the graphene layer: this is the so-called
perfect absorber studied in depth recently [14,15]. An
increase in the absorption of graphene discs and nano-
ribbons at certain frequencies has also been observed in
earlier studies [14,15]. Nonetheless, it should be mentioned
here that this is a completely different physical mechanism
than the one described here. The increase in the absorption
of graphene discs and ribbons is due to the excitation of the
localized GSPPs unlike the propagating ones induced on
the vibrating graphene sheet as described here.
It is clear from Eq. (2) that !res is a function of �b, EF,

and �.�b and EF can be thought of as dynamically tunable
device design parameters:�b can be controlled through the
elastic dispersion relation of the graphene sheet by varying
!b, and EF can be controlled by applying an external gate
voltage to the graphene sheet. Additionally, � is also easy
to vary. Electromagnetic simulations are carried out to
demonstrate the effect of these parameters on the response
of the vibrating graphene sheet for three sets of simula-
tions. Simulation set (i): �b ¼ 250 nm, � ¼ 0, and EF is
varied between 0.5 and 1.1. eV. Figures 4(a) and 4(b) plot
the absorption spectra for various values of EF. It is clearly
shown that !res can be tuned between 35–55 THz for the
N ¼ 1 mode [Fig. 4(a)] and 50–75 THz for the N ¼ 2
mode [Fig. 4(b)] by varying EF. This broad tuning of the

50 55 60 65 70 75
0

0.2

0.4

0.6

0.8

1

Frequency (THz)

Absorption
Transmission
Reflection

(a)

(c)

E xE yE

E H

H zH

(b)

(d)

N=1 N=2

Incident

(N=1)

(N=2)

FIG. 3 (color online). (a) Absorption, transmission, and reflec-
tion spectra of the graphene sheet with � ¼ 0:3 nm and EF ¼
1 eV, which is vibrated at flexural frequency !b=ð2�Þ ¼
175 MHz (�b ¼ 250 nm). The inset shows the direction of
electromagnetic excitation (� ¼ 0) and the resulting reflected
waves (thin arrows). Note that only the specular reflection was
taken into account since the period of the grating �b ¼ 250 nm
is very small compared to wavelength of the incident electro-
magnetic field �0 ¼ 7 	m. (b) Electric and magnetic field
norms in the unit cell for the N ¼ 2 mode, where the induced
GSPP’s wave number is 4�=�b. Different components of (c) the
electric field and (d) the magnetic field demonstrate the reso-
nances associated with the N ¼ 1 mode, where the induced
GSPP’s wave number is 2�=�b. The periodicity in the profile
of the electric field norm is plotted along the grating’s upper
boundary and it shows the order of each corresponding grating
mode.
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resonance frequency could be understood from Eq. (2),
where for normal incidence, the resonance frequency is of

the form !res �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NEF=�b

p
. This relation explains also

the larger tunability of the second mode and the factorffiffiffi
2

p
between resonance frequencies of both modes at

same Fermi energy. The propagation length normalized
to the GSPP wavelength is defined as the ratio

Reð ~�SPPÞ=Imð ~�SPPÞ [12] and is equal to 120, 201, 296,
and 402 for EF 0.5, 0.7, 0.9, and 1.1 eV, respectively. As
expected, it is higher for larger Fermi levels (lower intrin-
sic losses). Simulation set (ii): EF ¼ 1 eV, �b ¼ 250 nm,
the frequency is 51 THz for the N ¼ 1 mode and 72 THz
for the N ¼ 2 mode, and � is varied from ��=4 to �=4.
Figures 4(c) and 4(d) plot the absorption vs �. Figure 4(c)
shows that the amplitude of absorption for theN ¼ 1mode
reaches very high values approaching 45% in a symmet-
rical manner. For � ¼ 0, its maximum is achieved; this
means that coupling between the incident field and the
GSPPs is maximized due to matching in their respective
wave numbers. The effect can be considered as robust to

the variations in � since the absorption’s full width at half
maximum (FWHM) is around �=4. Figure 4(d) shows that
the amplitude of absorption for the N ¼ 2 mode behaves
quite differently: It has also a maximum for � ¼ 0, but it is
more sensitive to the variations in � and the FWHM is
around �=8. Simulation set (iii): EF ¼ 1 eV, � ¼ 0, and
!b=ð2�Þ is varied between 60 MHz and 46 GHz (corre-
sponding to periods of the grating �b ranging from 50 nm
to 10 	m). Higher values of �b will result in convergence
of !b to

ffiffiffiffiffiffiffiffiffi
�h�

p
=D because of the presence of the Winkler

foundation term �=D , where � ¼ 1011 Nm�1 [32].
Figures 4(e) and 4(f) plot the GSPP resonance frequency
!res=ð2�Þ vs biharmonic wave natural frequency!b=ð2�Þ.
The continuous curves are obtained by solving Eq. (2) for
!res given !b (or �b). Dots represent !res obtained via
electromagnetic simulations. The agreement is excellent.
These two figures also demonstrate the potential of our
approach since it is shown that !res could be dynamically
tuned from 10 to 120 THz and from 10 to 160 THz for the
grating modes with N ¼ 1 and N ¼ 2, respectively.
In this Letter we have proposed to couple elastic vibra-

tions of very thin graphene sheets to light in order to
generate highly confined GSPPs. Our numerical and theo-
retical simulations demonstrate the possibility to achieve
reconfigurable gratings that could have highly tunable and
fast response to light. By stopping the elastic vibration, it is
indeed feasible to turn off rapidly the graphene plate. This
could be a significant step towards the integration of gra-
phene plasmonics devices into realistic and multiple appli-
cations and prompt further advances in the emerging field
of transformational plasmonics as well [33]. Finally, our
concept permits us not only to excite GSPPs but also to
tune them by means of their physical (Fermi energy) and
geometrical (period of the grating) properties.
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Note added.—Schiefele et al. [34] recently reported a

different technique to excite graphene plasmons through
electrically generated surface acoustic waves.
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FIG. 4 (color online). Absorption spectra of the vibrating
graphene sheet when �b ¼ 250 nm and � ¼ 0 for four values
of EF (a) for the N ¼ 1 mode and (b) for the N ¼ 2 mode.
Absorption amplitude vs � when EF ¼ 1 eV and �b ¼ 250 nm
(c) at frequency 51 THz for the N ¼ 1mode and (d) at frequency
72.1 THz for the N ¼ 2 mode. GSPP resonance frequency
!res=ð2�Þ vs flexural frequency !b=ð2�Þ when EF ¼ 1 eV
and � ¼ 0 (e) for the N ¼ 1 mode and (f) for the N ¼ 2
mode. The continuous curves are obtained by solving Eq. (2)
for !res with given !b or �b. Dots represent frequencies !res

obtained via electromagnetic simulations. Note the good
agreement.
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