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We show that projected entangled-pair states (PEPS) in two spatial dimensions can describe chiral

topological states by explicitly constructing a family of such states with a nontrivial Chern number. They

are ground states of two different kinds of free-fermion Hamiltonians: (i) local and gapless; (ii) gapped,

but with hopping amplitudes that decay according to a power law. We derive general conditions on

topological free-fermionic projected entangled-pair states that show that they cannot correspond to exact

ground states of gapped, local parent Hamiltonians and provide numerical evidence demonstrating that

they can nevertheless approximate well the physical properties of topological insulators with local

Hamiltonians at arbitrary temperatures.
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Introduction.—Projected entangled-pair states (PEPS)
[1] are believed to provide an accurate description of
many-body quantum systems with local interactions in
thermal equilibrium [2]. At zero temperature, PEPS con-
tain the necessary entanglement demanded by the area law
in order to describe gapped Hamiltonians with local (short-
range) interactions [3]. In fact, matrix-product states, the
one-dimensional (1D) version of PEPS, have been a key
tool leading to the classification of all possible phases of
spin Hamiltonians of that kind [4–6]. Furthermore, well-
known topological states in two dimensions (2D), such as
the toric code [7], resonating valence bond [8], or string
nets [9], possess a simple and exact description within that
family [10–13]. This seems to indicate that PEPS can also
help us to characterize and classify the gapped (topologi-
cal) phases in dimensions higher than one.

Despite the above indications, there exists a deep reason
to believe that PEPS cannot describe the physics of certain
kinds of topological phases, namely, those that have chi-
rality. In fact, despite a significant effort in the research of
tensor network states, we do not know any PEPS corre-
sponding to a 2D chiral topological phase, not even for the
simplest topological insulators [14,16]. Those are free-
fermionic systems with a nontrivial Chern number C � 0
that can be thought of as the lattice counterpart of integer
quantum Hall materials. This fact may be qualitatively
understood as follows. Any PEPS is the ground state of a
local so-called parentHamiltonianH ¼ P

ihi [17,18]. This
Hamiltonian is frustration free, meaning that the PEPS is
annihilated by each local term hi individually. But if H
corresponds to a free-fermion system with a gapped band

structure, the Hamiltonian terms are of the form hi ¼ byi bi,
where the bi are quasiparticle operators supported in a
small region. Their Wannier functions must thus be local-
ized, which in turn has been proven to be impossible for
systems with a nontrivial Chern number [19,20]. Still, the
question whether PEPS can describe chiral topological

insulators is open: first, even though their parent
Hamiltonians would be gapless, they might still be ground
states of other non-frustration-free gapped Hamiltonians
(with nonlocalized Wannier functions); second, although
they do not provide exact descriptions of all chiral states,
they may still be able to approximate them accurately.
In this Letter, we explicitly construct a simple family of

PEPS with Chern number C � 0 on a square lattice. Our
construction is based on Gaussian fermionic PEPS
(GFPEPS) [21]; that is, those that can be created out of
the vacuum by applying a Gaussian function of creation
and annihilation operators. By simple, we mean with the
smallest possible bond dimension, i.e., where there are just
four auxiliary fermions on each lattice site. This family of
GFPEPS possesses correlation functions with a power-law
decay as well as nonlocalized Wannier functions. In fact,
they are the unique ground states of free-fermion, gapped
Hamiltonians with hopping amplitudes following the same
decay. Apart from that, as all PEPS, they are ground states
of local parent Hamiltonians, which however, must be
gapless due to the presence of critical correlations.
Indeed, we prove that there cannot be GFPEPS with a
nontrivial Chern number that have a finite-range and
gapped parent Hamiltonian, since all such Hamiltonians
are in the trivial phase. This result, however, does not rule
out the possibility of using PEPS to approximate the
ground state of a chiral topological insulator with a local
Hamiltonian. In fact, we investigate this issue and conclude
that this is possible, since the approximation improves
exponentially in the number of fermionic modes in the
bond. Finally, we show that by using mixed GFPEPS we
can approximate the finite temperature properties of such
systems as well.
Gaussian fermionic PEPS.—We start with an N � N

square lattice with periodic boundaries and f physical
fermionic orbitals at each site, with creation (annihilation)

operatorsayr;j (ar;j), with r ¼ ðx; yÞ the site and j ¼ 1; . . . ; f
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the orbital index; we will mostly work in the basis of

physical Majorana operators cr;2j�1 ¼ ayr;j þ ar;j and

cr;2j ¼ ð�iÞðayr;j � ar;jÞ. To obtain a PEPS description of

the system, we start out with maximally entangled virtual
Majorana modes �v

r;� (with � ¼ 1; . . . ; � and v ¼ l, r, u,
d), which are obtained by acting with 1þ i�r

r;��
l
ðrþð1;0ÞÞ;�

and 1þ i�u
r;��

d
ðrþð0;1ÞÞ;� on thevacuum (see Fig. 1), yielding

a pure state�in [21]. Here, the number ofMajorana bonds�
is a parameter that can be used to systematically enlarge the
class of states. Subsequently, we apply the same linear map
E to each lattice site r, which maps the 4� auxiliary modes
�v
r;� to the 2f physical modes cr;s (s ¼ 1; . . . ; 2f); this

yields the translationally invariant fermionic PEPS �out.
We now restrict to the case where the map E is Gaussian.

Then, �out is a free-fermion state, which can be described
in terms of its covariance matrix (CM) �out, defined as
ð�outÞðr;sÞ;ðr0;tÞ ¼ ði=2Þtrð�out½cr;s; cr0;t�Þ; similarly, for �in

we have ð�inÞv;v0
ðr;�Þ;ðr0;�Þ ¼ ði=2Þtrð�in½�v

r;�; �
v0
r0;��Þ. Finally,

E can be expressed using a CM M defined on the 2fþ
4� modes fðcr;sÞ; ð�v

r;�Þg, which encodes how E correlates

the input modes with the output modes [22] (an explicit
expression will be given soon). These CMs are real, anti-
symmetric, and fulfill ��> � I, where equality only holds
for pure states (and purity-preserving maps).

Since we consider a translational invariant system
of free fermions, it is most convenient to work in
Fourier space. The Fourier transformed CM Gin of �in,
expressed in terms of Fourier transformedMajorana modes
�̂v
k;� ¼ ð1=NÞPre

�ik�r�v
r;� [k ¼ ðkx; kyÞ, kxðyÞ=ð2�=NÞ ¼

0; . . . ; N � 1], then reads

GinðkÞ¼
0 eikxI�

�e�ikxI� 0

 !
� 0 eikyI�

�e�ikyI� 0

 !
; (1)

where I� denotes a �� � identity matrix; the ordering of

the modes is l, r, u, d. The CM M for the Gaussian map E
has a block structure

M ¼ A B

�B> D

 !
¼ �M>; (2)

where A 2 R2f�2f, B 2 R2f�4�, andD 2 R4��4� are var-
iational parameters corresponding to physical and virtual
modes. AnyM withMM> � I characterizes an admissible
E. Applying E to the input �in results in a CM [22,23]

GoutðkÞ ¼ B½D�GinðkÞ��1B> þ A (3)

expressed in terms of the Fourier transformed physical
Majorana modes dk;s ¼ ð1=NÞPre

�ik�rcr;s; Gout is pure

if MM> ¼ I (i.e., E preserves purity). Expressing the
inverse in Eq. (3) by the adjugate matrix, one finds that
½GoutðkÞ�st ¼ ½pstðkÞ=qðkÞ�, where pstðkÞ and qðkÞ ¼
det½D�GinðkÞ� are trigonometric polynomials of degree
�2� (Supplemental Material [23]).
For pure GFPEPS, the class of quadratic Hamiltonians

Hf ¼ �i
X
k

X
s;t

"ðkÞ½GoutðkÞ�stdk;sdyk;t (4)

with spectrum "ðkÞ ¼ "ð�kÞ � 0 has �out as its ground
state. These ‘‘parent Hamiltonians’’ can have different
properties: (i) If qðkÞ> 0, then for "ðkÞ � 1, Hf has

exponentially decaying two-body interactions in real
space, and by choosing "ðkÞ ¼ qðkÞ, one obtains a strictly
local gapped Hamiltonian; (ii) if qðkÞ ¼ 0 for some k and
GoutðkÞ is continuous, "ðkÞ � 1 still yields a gapped
Hamiltonian. Then, whether Hf has exponentially decay-

ing terms depends on whether GoutðkÞ has any discontinu-
ities in its derivatives (which give rise to algebraically
decaying terms in real space after Fourier transforming).
Example of a chiral GFPEPS.—Using this construction,

we have obtained a family of chiral topological insulators
whose ground states are GFPEPS. They have f ¼ 2, � ¼
2, and M [Eq. (2)] is given by

A ¼ ð�1þ 2�Þ ! 0

0 �!

 !
;

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� �2

2

s
I�! Iþ! � ffiffiffi

2
p

!
ffiffiffi
2

p
I

I�! �I�!
ffiffiffi
2

p
I � ffiffiffi

2
p

!

 !
;

D ¼

0 ð�1þ �ÞI � �ffiffi
2

p I �ffiffi
2

p I

ð1� �ÞI 0 � �ffiffi
2

p I � �ffiffi
2

p I

�ffiffi
2

p I �ffiffi
2

p 0 ð�1þ �ÞI
� �ffiffi

2
p I �ffiffi

2
p I ð1� �ÞI 0

0
BBBBBBB@

1
CCCCCCCA
;

(5)

where

I ¼ 1 0

0 1

 !
and ! ¼ 0 1

�1 0

 !
:

The ordering of the physical Majorana modes is (c1", c2",
c1#, c2#) and that of the virtual modes as in Eq. (1); here,

0< �< 1. Using Eq. (3), one finds that

FIG. 1 (color online). Schematic of a GFPEPS in two dimen-
sions. The Majorana modes (small gray balls) form virtual bonds
indicated by blue lines, which are mapped to the physical
fermions (red balls) by a Gaussian map denoted by big blue
circles.
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GoutðkÞ

¼ 1

~qðkÞ
p1ðkÞ! i½p3ðkÞI�p2ðkÞ!�

i½p3ðkÞIþp2ðkÞ!� �p1ðkÞ!
� �

with p1ðkÞ¼�2ð1þcoskxÞð1þcoskyÞð1�2�Þ��2�
½1þ2coskyþcoskxð2þ3coskyÞ�, p2ðkÞ¼2ð��þ�2Þ�
ð1þcoskyÞsinkx, p3ðkÞ¼2ð���2Þð1þcoskxÞsinky, and

~qðkÞ¼2ð1þcoskxÞð1þcoskyÞð1�2�Þþ�2½3þ2coskyþ
coskxð2þcoskyÞ�; note that GoutðkÞ is continuous but non-
analytic at k ¼ ð�;�Þ.

Employing Eq. (4), we can now define particle-number-
conserving parent Hamiltonians for Gout: If we choose
"ðkÞ � 1, we obtain a gapped flat-band Hamiltonian with
algebraically decaying hoppings (see Fig. 2), whereas if we
choose "ðkÞ ¼ qðkÞ, we obtain a strictly local Hamiltonian
with only next-nearest neighbor couplings, which however,
is gapless atk ¼ ð�;�Þ (inset of Fig. 2). In the first case, the
Chern number can be computed from Gout (Supplemental
Material [23]) and is found to beC ¼ �1 for all 0< �< 1.
Note that by changing to the basis c1" 	 c2#, c2" 	 c1#, Gout

decouples into twoGFPEPS describing spinless topological
superconductors, each with � ¼ 1 and equal chiralities.

Conditions for topological GFPEPS.—Let us now show
that topological GFPEPS are very special. In particular, we
will prove that any GFPEPS with a property known as
injectivity [24] (which holds generically), or more gener-
ally for which qðkÞ is nonsingular, has a gapped local
parent Hamiltonian that is connected to a trivial state via
a gapped path and therefore cannot be topological; this
implies that the parent Hamiltonians defined via �ðkÞ ¼
qðkÞ have to be gapless. (This shows that injectivity in
GFPEPS is much stronger than for general PEPS, where it

does not have implications about the spectrum or the phase
except for 1D systems.)
Let us first define injectivity for GFPEPS: By blocking

nv � nh sites to a new supersite (by tracing over the virtual
particles), we can reach a point where the number of
physical Majorana modes dph ¼ 2fnhnv is larger than

the number of virtual modes dvir ¼ 2�ðnh þ nvÞ.
Then, GouthðkÞ ¼ Bh½Dh �GinhðkÞ��1B>

h þ Ah, where

h denotes the corresponding matrices after blocking. We
say that a GFPEPS is injective if there is a finite blocking
size such that rankðBhÞ ¼ dvir; i.e., the virtual system
GinhðkÞ is fully mapped onto the physical space. In this
case, we can use a singular value decomposition of Bh ¼
V>�U, where V is an isometry, VV> ¼ Idvir , and � is a

diagonal strictly positive matrix, to obtain from Eq. (3)
VðGouthðkÞ � AhÞV> ¼ �U½Dh �GinhðkÞ��1U>�,
which implies

det½VðGouthðkÞ � AhÞV>� ¼ det2ð�Þ
det½Dh �GinhðkÞ� : (6)

Since all terms on the left-hand side are entries of
CMs and thus bounded, it follows that qhðkÞ :¼
det½Dh �GinhðkÞ� � 	 > 0 [in particular, the parent
Hamiltonian of the blocked GFPEPS with "ðkÞ ¼ qhðkÞ
in Eq. (4) is gapped and local].
It is now exactly this property that allows us to construct

a gapped interpolation from GouthðkÞ to the topologically
trivial state by adiabatically disentangling pairs of
Majorana bonds (we can take nv, nh to be even, since
injectivity is stable under blocking) via

�’
in ¼

! sin’ I cos’

�I cos’ ! sin’

 !
: (7)

Here, �’
in is the CM of pairs of Majorana bonds on hori-

zontally or vertically adjacent sites, which for ’ ¼ 0
describes a maximally entangled state, corresponding to

the initial GFPEPS, whereas ��=2
in corresponds to a product

state, and thus, G�=2
outh describes a topologically trivial state

[25]. Since from Eq. (6), det½Dh �G’
inhðkÞ�> 0 for all

’ 2 ½0; �=2�, this interpolation corresponds to a smooth
gapped local Hamiltonian, showing that any injective
GFPEPS is in the trivial phase.
This argument can be generalized to the case where

rankðBhÞ< dvir (i.e., the state is noninjective), as long as
dvir � dph and qhðkÞ ¼ det½Dh �GinhðkÞ�> 0. In this

case, define � :¼ mink det½Dh �GinhðkÞ�. It is always
possible to rotate Mh into M0

h ¼ e��ZMhe
�Z with some

appropriate Z ¼ �Z> to obtain rankðBhÞ ¼ dvir, while
keeping det½D0

h �GinhðkÞ�> 0 if � is sufficiently

small compared to �. From there, it is again possible to
perform an adiabatic evolution to the trivial state as before.
If the initial GFPEPS was particle-number conserving,
this symmetry can be kept along the path by using a
particle-number-conserving interpolation �’

in. Thus, our

FIG. 2 (color online). Correlation functions as given by
jj�outðr� r0Þjjtr for � ¼ 1=

ffiffiffi
2

p
on a 500� 500 lattice as a

function of the distance jr� r0j along the x and y directions
(blue crosses, both lie on top of each other) and along x̂þ ŷ
(green stars). Inset: Energy separation between the occupied and
the unoccupied band as a function of k.
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proof applies to both topological insulators and topological
superconductors.

Numerical results.—We have performed numerical
calculations on a 10� 10 lattice for the model

H ¼ P
kðayk;"; ayk;#Þð� � dðkÞÞðak;"; ak;#Þ>, with � ¼

ð
1; 
2; 
3Þ the Pauli matrices and dðkÞ ¼
ðsinky;� sinkx; 2� coskx � cosky � eSÞ. This model has

Chern number C ¼ �1 for 0< eS < 2, C ¼ 1 for 2<
eS < 4, and C ¼ 0 otherwise [27].

First, we determined the minimal distance 	 :¼
maxkjjGexð�;kÞ �GGFPEPSðkÞjjtr between the CM of
e��H=trðe��HÞ (for eS ¼ 1) at � ¼ 1 and the one of the
GFPEPSGGFPEPSðkÞ with a given �. The results are shown
in Fig. 3(a): We find that the error 	 in the CM decreases
exponentially with the number of bond modes �. Since all
physical quantities depend solely on the CM, our results
indicate that if � is increased, all relevant observables can
be approximated by a GFPEPS with exponentially decreas-
ing error. Most importantly, the Hall conductivity
�ð
xy=2�Þ reaches C ¼ �1 with exponentially decreas-

ing difference, and the entropy of the optimal GFPEPS
approximation decreases exponentially with �.

We have also investigated the power of the GFPEPS to
describe topological insulators at finite temperature.
This was done by minimizing the free-energy functional
Fð�GFPEPSÞ ¼ trðH�GFPEPSÞ � TSð�GFPEPSÞ (S: von
Neumann entropy) of the above model at eS ¼ 1, with a
GFPEPS with � ¼ 2, i.e., one bond Majorana fermion per
physical fermion. Compare this in Figs. 3(b) and 3(c): For
T ! 0, the entropy of the GFPEPS does indeed converge
to zero; that is, it approaches a pure state; its analytical
form is just the one given in Eq. (5), with � 
 0:705. This
shows that by minimizing the free energy as a function of
T one can converge to pure states that are topological
even for small � values. Thus, pure GFPEPS are well
suited to describe topological insulators in numerical
simulations. We have substantiated this claim further by
minimizing the free energy Fð�GFPEPSÞ for � ¼ 2 as a
function of �1 � eS � 1 for T ¼ 0; see Fig. 3(d). The
entropies of the optimal GFPEPS were of the order of
� 10�10, which is why their Chern numbers coincide
with their Hall conductivities, which jump from 0 to �1
at eS 
 0. These results indicate that quantum phase
transitions can be detected by approximating the
ground-state energy with GFPEPS.
Conclusions.—In this Letter, we have studied whether

projected entangled-pair states can be used to describe
chiral topological states. We have answered this question
in the affirmative by providing a class of GFPEPS describ-
ing systems with a nonzero Chern number; these states can
be ground states of either gapless strictly local
Hamiltonians or gapped Hamiltonians with algebraically
decaying hoppings and/or pairings. We have further shown
that the gaplessness of the strictly local parent Hamiltonian
is a necessary condition to have topological order. Finally,
we have numerically studied the ability of GFPEPS to
approximate chiral free-fermion systems and found that
GFPEPS can efficiently approximate both ground and
thermal states of chiral Hamiltonians with a small bond
dimension, making them a well-suited tool for the numeri-
cal study of chiral fermionic systems.
Whereas we restricted our studies to Gaussian PEPS,

it appears that one can also describe interacting
chiral systems with fermionic PEPS by twisting the
Gaussian PEPS projector E with a non-Gaussian map.
We therefore believe that fermionic PEPS will also be
suitable as a numerical tool to study fractional quantum
Hall systems.
We thank the Benasque Center of Sciences, where part

of this work was done, for their hospitality. T. B.W.
acknowledges financial support by the QCCC
Elitenetzwerk Bayern. N. S. acknowledges support by the
Alexander von Humboldt foundation. Part of the work was
supported by the EU Integrated Project SIQS.
Note added.—After completion of this work, we learned

that Dubail and Read had independently obtained related
results [28].

FIG. 3 (color online). (a) Error 	 (see text) of the covariance
matrix for T ¼ 0, eS ¼ 1 (blue circles), entropy SGFPEPS of the
optimized GFPEPS (red crosses), difference between the Hall
conductivity �ð
xy=2�Þ and the Chern number C ¼ �1 (green

stars) for the optimized GFPEPS as a function of the number of
Majorana modes �. (b) The blue dashed curve and solid green
curve denote the Hall conductivity of the exact thermal state and
GFPEPS, respectively, as a function of the von Neumann entropy
of the exact state Sex=N

2. (c) Relative error of the free energy per
site of the optimized GFPEPS as a function of Sex=N

2. The
entropies of the optimized GFPEPSs were roughly proportional
to Sex. The Chern numbers of the Hamiltonians of which they are
thermal states were always C ¼ �1. (d) Relative error of the
free energy per site of the optimized GFPEPS as a function of the
parameter eS of the exact state at T ¼ 0. The optimized
GFPEPSs with Chern number C ¼ 0 are displayed by green
crosses and those with C ¼ �1 by open blue circles.
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