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We report on the magnetic properties of single Co atoms on graphene on Pt(111). By means of scanning

tunneling microscopy spin-excitation spectroscopy, we infer a magnetic anisotropy of K ¼ �8:1 meV

with out-of-plane hard axis and a magnetic moment of 2:2�B. Co adsorbs on the sixfold graphene hollow

site. Upon hydrogen adsorption, three differently hydrogenated species are identified. Their magnetic

properties are very different from those of clean Co. Ab initio calculations support our results and reveal

that the large magnetic anisotropy stems from strong ligand field effects due to the interaction between Co

and graphene orbitals.
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Graphene is a promising material for spintronics due to
the possibility of realizing controllable spin transport [1],
its perfect spin filtering [2], and spin-relaxation lengths of
several micrometers at room temperature [3]. Doping
graphene by magnetic impurities opens further possibil-
ities [4–6]. In particular, the creation of extended magnetic
phases [7], quantum critical Kondo anomalies [8,9], and
the strong scattering of spin currents [10] have been pre-
dicted. Moreover, for 3d metal atoms on graphene, the
calculated uniaxial magnetic anisotropies [11,12] are be-
yond the current record value for a surface-adsorbed atom
[13]. Furthermore, hydrogen adsorption has been predicted
to change the spin of the adatoms [14], underlining its
potential to tailor the magnetic properties. However, the
predicted anisotropies and moments are highly controversial
and largely depend on how electron correlations are treated.
For the prototypical system of Co atoms on graphene, spin
moments between 1 and 3�B and anisotropies of different
signs have been calculated [12,15–17]. At present, there is
only one experiment addressing the magnetic properties of
transition-metal adatoms on graphene. It reports on-top
adsorption, a high-spin ground state, and weak magnetic
anisotropy for Co=graphene=SiCð0001Þ [18].

Here we present the first local measurement of the
magnetic moment and anisotropy of individual Co atoms
on graphene on Pt(111). This substrate was chosen since
graphene binds very weakly to it [19], thus approaching
freestanding graphene. Using scanning tunneling micros-
copy (STM) spin-excitation spectroscopy [20], we find an
exceptionally large magnetic anisotropy of K ¼ �8:1�
0:4 meV with out-of-plane hard axis and a magnetic
moment of 2:2� 0:4 �B. Fully relativistic density func-
tional theory (DFT) calculations show the anisotropy to be
mainly a hybridization effect. In addition to clean Co, we
identify three hydrogenated species, CoHn, n 2 f1; 2; 3g,

with very different magnetic behavior. The coexistence of
clean and hydrogenated adatoms is expected to be a gen-
eral feature of transition metal atoms on graphene that has
to be considered in the interpretation of any ensemble
measurement.
The experiments were performed with a homebuilt

STM operating at T ¼ 0:4 K and in magnetic fields up to
B ¼ 8:5 T perpendicular to the surface. Pt(111) was pre-
pared by means of Arþ sputtering and flash annealing
(1400 K) cycles until surface impurity concentrations
<0:5% were reached. Graphene patches of various sizes
(50–500 nm) were grown by both C segregation (1500 K,
1–3 min) and chemical vapor deposition (10 L C2H4 at
1230 K). 5:0� 0:5� 10�3 monolayers of Co were depos-
ited in situ at 16 K and ptot � 8� 10�10 mbar using an
e-beam evaporator with a 99.995% purity Co rod. This led
to individual immobile adatoms [21]. Constant-current
STM images were acquired with a W tip at tunnel current
It and sample bias Vt given in the figure captions. dI=dV
spectra were recorded with open feedback and lock-in
using the indicated peak-to-peak modulation voltage
Vmod at frequency f. d2I=dV2 spectra were obtained by
numerical differentiation.
The first-principles DFT calculations used the local

density approximation with a mean-field Hubbard correc-
tion (LDAþU) [22,23], as implemented in QUANTUM-

ESPRESSO [24]. We chose U ¼ 4 eV for Co in agreement

with previous calculations [15]. Spin-orbit effects were
accounted for by using the fully relativistic norm-conserving
pseudopotentials acting on valence electron wave functions
represented in the two-component spinor form [25]. The
CoHn, n 2 f0; 1; 2; 3g, adsorption complexes were placed in
a (4� 4) supercell of graphene and the structures were fully
relaxed. The magnetic anisotropy energy was obtained from
the difference of total energies of the out-of-plane and
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in-plane spin configurations. The first-principles simulated
STM images show the tunnel current at a constant height of

z ¼ 4 �A above the Co adatom and use the Tersoff-Hamann
approximation [26]. The atomic spin and orbital moments,
as well as the electronic configuration of the Co adatom,
were obtained by projecting the wave functions of the total
system onto atomic orbitals of the Co atom.

Figure 1(a) shows an atomically resolved image of the
graphene layer. It appears as a hexagonal lattice of protru-
sions, one per graphene unit cell [27,28]. This can be
rationalized by the very small difference in substrate binding
energy of the two C atoms in the graphene unit cell. Hence,
the contrast is dominated by the difference between C6 rings
and sixfold hollow sites. The latter are imaged as protrusions
with the present tip and tunnel parameters. In addition,
one distinguishes the graphene moiré pattern caused by
the misfit with the Pt(111) substrate [27,29,30]. Graphene
on Pt(111) exhibits a variety of moiré structures [27,30].
The results presented here were obtained on the one with a
period of (4� 4) graphene unit cells; however, they are
characteristic of Co adatoms also on the other moiré
structures.

A STM image of three Co monomers adsorbed on
graphene is shown in Fig. 1(b). The adatoms appear as

2.4 Å high protrusions. The long-range corrugation of the
moiré pattern is also visible. A close-up of one Co adatom
is shown together with the atomically resolved graphene
lattice in Fig. 1(c). From the extrapolation of the graphene
lattice close to the adsorbate, we conclude that its apex is
located on the sixfold hollow site. This adsorption site
corresponds to the lowest energy configuration in our
calculations, and the simulated STM image shown in the
inset agrees very well with the experiment. The lateral
extent of the adsorbate on graphene is, after taking the
different apparent height into account, identical to the one
on Pt(111), as shown in Fig. 1(d). Therefore, the adsorbate
and the electron charge are very well localized. The same
adsorption site was also reported for Co atoms on
H-intercalated graphene=SiCð0001Þ [31]. For that system,
hollow and top site adsorption coexist, while only top site
was observed for graphene=SiCð0001Þ [18].
After evaporating Co onto graphene, we distinguish four

Co-related adsorption species by their apparent heights and
inelastic conductance steps, as shown in Figs. 2(a)–2(c).
We label them A, B, C, and D, in order of increasing
abundance on a freshly prepared sample. The differential
conductance features of B and C show no Zeeman splitting
in an external field [32] and are therefore very likely of
vibrational origin, very similar to the ones reported for
Co=graphene=SiO2=Sið100Þ [5] and for hydrogenated tran-
sition metal and rare earth atoms on Ag(100), where they
have been attributed to frustrated translations [33]. In con-
trast, and as we will see in detail below, the conductance
steps characterizing adsorbates A and D show a clear
Zeeman splitting proving their magnetic origin [20].
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FIG. 1 (color online). (a) STM image of graphene=Ptð111Þ
showing atomic contrast together with moiré pattern (Vt ¼
�1 mV, It ¼ 8 nA, T ¼ 4:5 K). (b) STM image of three Co
adatoms (Vt ¼ �20 mV, It ¼ 1 nA, T ¼ 1:7 K). (c) Hollow
adsorption site inferred from adsorbate apex with respect to
atomically resolved C lattice sketched in black (Vt ¼
�50 mV, It ¼ 100 pA, T ¼ 4:5 K). Inset: Simulated STM im-
age. (d) Line profile of Co atom on graphene=Ptð111Þ (blue dots,
FWHM ¼ 9:0 �A) and on Pt(111) (black dots, FWHM ¼ 8:3 �A)
taken with the same tip (Vt ¼ �100 mV, It ¼ 100 pA,
T ¼ 4:5 K).
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FIG. 2 (color online). (a),(b) Distinct apparent heights for
clean Co (D), CoH (C), CoH2 (B), and CoH3 (A) (Vt ¼
�25 mV, It ¼ 50 pA, T ¼ 4:5 K). (c) Characteristic inelastic
conductance steps of the four species (feedback gated at
Vt ¼ �25 mV and It ¼ 250 pA, Vmod ¼ 1 mV, f ¼ 611 Hz,
T¼4:5K). A, B, and D spectra are offset for clarity. (d) Three
CoH3 complexes imaged as triangles. (e),(f) Successive dehy-
drogenation of the upper one by voltage pulses (Vt ¼ �100 mV,
It ¼ 50 pA, T ¼ 0:4 K). Insets: Simulated STM images of the
corresponding CoHn complexes.
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In order to identify the four species, we note that adsorp-
tion complex A can be transformed into B by applying
a tunnel voltage of jVtj ¼ 155� 11 mV with the tip posi-
tioned above the adsorbate. This transformation can be
continued towards type C with jVtj ¼ 180� 7 mV, and
this type is finally converted into typeDwith jVtj ¼ 454�
31 mV [32]. Further increase of the tunnel voltage leads
to a jump of the adsorbate to another hollow site, without
altering its type D character. The irreversibility of this
transformation suggests a successive chemical modifica-
tion of the adsorbed species that is terminated once type D
is reached.

Individual adsorbed transition metal atoms have been
proven to dissociate H2 with very high efficiency [34]. We
observe that direct exposure of the sample toH2 transforms
all species almost entirely into type A. Similarly, exposure
to the residual gas of the UHV chamber surrounding the
cryostat augments the abundance of A while D strongly
decreases [32]. This identifies type A as most and typeD as
least hydrogenated one. A comparison of high-resolution
STM images with simulated ones identifies the intermedi-
ate species. Figure 2(d) shows that type A has a triangular
envelope in striking agreement with the simulated STM
image of CoH3 shown in the inset. The upper adsorbate
in Figs. 2(d)–2(f) has successively been transformed with
voltage pulses as described above, while the lower two
adsorbates remained unchanged in nature and appearance,
proving that the tip apex did not change. Type B is imaged
as two distinct protrusions, while C is imaged as a single
one, both in excellent agreement with the simulated STM
images for CoH2 and CoH; see insets. Altogether, these
observations unequivocally identify species D as clean Co
and C, B, A as CoHn, n 2 f1; 2; 3g. The three adsorbates in
Fig. 1(b) are of type D; i.e., they are clean Co adatoms.

We now focus on the magnetic properties of the clean
species. Their differential conductance shown in Fig. 3(a)
is dominated by two steps at �8:1 mV. The step width at
B ¼ 0 T is with �E ¼ 950� 350 �eV, after correction
for modulation and T broadening, comparable to reported
values for single atoms on metal surfaces [35]. The smaller
features visible at �0:5 and 2.5 meV are not reproducible
with different tips and therefore stem from the tip. The two
steps progressively split in increasing out-of-plane mag-
netic fields, which is best seen in the d2I=dV2 spectra
shown in Fig. 3(b).
The field dependence of the step energies Estep is pre-

sented in Fig. 3(c). The single step splits into two with
equal amplitude [see Fig. 3(b)], implying a transition
between a singlet ground state (m ¼ 0) and a doublet
excited state (m ¼ �1), and thus an integer value for S
[see Fig. 3(d)]. As a general tendency, the occupation of
the Co d states increases upon adsorption on a conducting
substrate and values of S � 3=2 are normally observed
[36]. Therefore, S ¼ 1 is the most reasonable spin multi-
plicity accounting for our findings. This value is supported
by our first-principles calculations [see Fig. 3(e)] and con-
sistent with other theoretical predictions for Co atoms on
graphene [15].
To access the magnetic anisotropy, the field dependence

of the step energies has been modeled by the following spin
Hamiltonian [37]:

Ĥspin ¼ g�BŜ �BþDŜ2z ; (1)

where g is the electron Landé factor,B denotes the external

magnetic field, D the uniaxial anisotropy parameter, and Ŝ
the adatom total spin operator [38,39]. The z axis is chosen
by convention such as to maximize jDj. For the present
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FIG. 3 (color online). (a) Field-dependent dI=dV curves of a clean Co atom proving the magnetic origin of conductance steps at
�8:1 mV (dots: raw data; lines: smoothened; Vt ¼ �15 mV, It ¼ 250 pA, Vmod ¼ 200 �V, f ¼ 287 Hz, T ¼ 0:4 K). Spectra at 4
and 8 T are offset for clarity. (b) d2I=dV2 of left-hand conductance step in (a) showing its Zeeman splitting. (c) Field-dependent spin-
excitation energies averaged over 26 adatoms (error bars show standard deviation). (d) An external out-of-plane field lifts the excited
state degeneracy leading to the observed Zeeman splitting of the spin-excitation energies. (e) DFT-calculated spin-dependent energies
and filling of Co 3d and 4s levels in the ligand field of graphene.
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case, we find that z is the out-of-plane direction. The
singlet m ¼ 0 ground state implies a positive value of D,
and thus a hard out-of-plane axis. Fitting the field-
dependent excitation energies of Fig. 3(c), we obtain D ¼
8:1� 0:4 meV and g ¼ 2:2� 0:4. Deviations from the
free-electron g factor of 2 can be rationalized in terms of
orbital contributions to the total magnetic moment, which
can be significant for single adatoms [36]. Assuming S ¼
1, we then obtain an effective spin magnetic moment of
2:2� 0:4�B and a magnetic anisotropy K¼�DS2z¼
�8:1�0:4meV [40], with the sign convention that
positive values of K signify easy out-of-plane magnetiza-
tion axes.

For Co on freestanding graphene, our LDAþU calcu-
lations show an out-of-plane hard axis, an anisotropy value
of K ¼ �9:55 meV, and a local spin moment of mS ¼
1:84�B, all three in excellent agreement with our experi-
mental findings and with one of the three possible scenar-
ios formerly found by DFT [15]. The local orbital moment

is predicted to have a strong anisotropy withmk
L ¼ 0:70�B

for the in-plane and m?
L ¼ 0:02�B for the out-of-plane

magnetization. Our calculations further show that the
effect of the Pt(111) substrate on the magnetic properties
of Co adatoms is very weak [32].

The absolute value of the anisotropy is within the error
bar identical to the present single atom record ofK ¼ 9:3�
1:6 meV measured for Co=Ptð111Þ, where the anisotropy is
mostly caused by the spin-orbit coupling of the heavy
substrate atoms [13]. Since the spin-orbit coupling is very
weak in graphene, the observed anisotropy is surprisingly
high. Our calculations reveal that such a high value of K
originates from the very strong anisotropy of the orbital

moment [41]. Its calculated value mk
L �m?

L ¼ 0:68�B is

significantly larger than in the case of Co adatoms on
Pt(111) [13]. The orbital anisotropy is mostly an effect of
the strong hybridization between Co and graphene states
and stems from the almost pure axial symmetry of the
sixfold adsorption site, which induces a large zero-field
splitting of the lowest Co states [15]. Evidence for strong
hybridization between Co and graphene is inferred from Co-
thin-film–graphene interface anisotropies [42,43] and from
the induced magnetization found in Co-island–graphene
interfaces [44].

We finally investigated the magnetic properties of CoH3,
which is the only hydrogenated complex displaying spin
excitations. Its conductance steps are with 30% relative
height much more pronounced than the ones of clean Co
with only 3% step height. Therefore, their field splitting is
evident already from the dI=dV raw data shown in Fig. 4(a).
The striking similarities with the magnetic behavior of clean
Co atoms [see Figs. 4(b) and 4(c)] allow us to perform the
same analysis as above, obtaining D ¼ 1:70� 0:05 meV
and g ¼ 2:19� 0:13.

For Ni atoms on graphene, hydrogenation has been
calculated to transform the nonmagnetic into a magnetic

ground state [14]. Here, we observe that the magnetic
features of clean Co reappear after the adsorption of three
hydrogen atoms, with identical hard axis direction, however,
with significantly reduced anisotropy parameter. Since H
adsorption can be made reversible by STM manipulation,
one can switch between the two anisotropy values in a
controlled way. However, the high reactivity of Co atoms
on graphenewithH2 complicates the characterization of this
system with spatially integrating techniques, such as x-ray
magnetic circular dichroism. We note that x-ray magnetic
circular dichroism measurements reported for Co atoms on
graphene=SiCð0001Þ have shown very weak magnetic an-
isotropy, without giving access to the magnetic moment and
anisotropy values [18].
In conclusion, we experimentally determined the

adsorption site, magnetic ground state, and anisotropy
of single Co atoms on graphene. The adsorption on
the sixfold hollow site induces an unprecedentedly high
anisotropy for a substrate with small spin-orbit coupling,
thus rendering magnetic impurities on graphene very
promising candidates for quantum magnetism and
spintronics.
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the Swiss NSF under Grants No. 200020_138043,
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