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The low-temperature phase diagram of parahydrogen in one dimension is studied by quantum

Monte Carlo simulations, whose results are interpreted within the framework of Luttinger liquid theory.

We show that, contrary to what was claimed in a previous study [Phys. Rev. Lett. 85, 2348 (2000)], the

equilibrium phase is a crystal. The phase diagram mimics that of parahydrogen in two dimensions, with a

single quasicrystaline phase and no quantum phase transition; i.e., it is qualitatively different from that of
4He in one dimension.
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The physics of strongly interacting many-body systems
confined to one physical dimension (1D) is a subject of
long-standing theoretical interest, with early works dating
back to the 1960s. A number of exact mathematical state-
ments can be made about 1D quantum fluids [1], whose
relevance is not merely ‘‘academic’’ as there exist ways to
restrict the motion of small atoms or molecules to 1D, to a
degree enabling one to test experimentally some of the
most interesting predictions. For example, one can adsorb
gases made of small atoms or molecules, such as helium,
inside carbon nanotubes [2], or in porous glasses [3],
providing cylindrical confinement for the adsorbed atoms
that can approach the 1D limit, as the radius of the cylin-
ders becomes of the order of a nanometer or less [4]. This
has motivated theoretical studies of hard core fluids such as
4He [5,6] and parahydrogen (p-H2) [7] in strictly 1D, as
well as in models of confinements aimed at reasonably
realistically describing the environment experienced by
atoms and molecules moving inside a single nanotube
[8], or in the interstitial channel of a bundle of nanotubes
[9], or in nanopores [10], as well as inside the (quasi-1D)
core of a screw dislocation in solid 4He [11].

What makes 1D many-body systems particularly inter-
esting is the existence of an elegant and powerful formal-
ism, known as Luttinger liquid theory (LLT), which
provides a universal description of Bose or Fermi systems
in terms of linear quantum hydrodynamics [12]. The LLT
asserts that, while no true long-range order can exist in 1D,
of either crystalline or superfluid type (even at temperature
T ¼ 0), two-body correlations display a slow power-law
decay as a function of distance r. Consider for definiteness
the pair correlation function gðrÞ; at any finite temperature
T, it will take on the following behavior in the thermody-
namic limit:

gðrÞ � 1� 1

2�K�2r2
þ A cosð2��rÞ 1

�2r2=K
: (1)

Here, � is the linear density of particles, A a nonuniversal,
system-dependent constant, whereas the Luttinger parame-
ter K determines how fast the oscillation of the gðrÞ decays

at long distances, and can thus be used to draw ameaningful
distinction between quasicrystalline and quasisuperfluid
phases. Specifically, if K > 2, the static structure factor
will develop (Bragg) peaks at reciprocal lattice vectors,
which is the experimental signature of a crystalline solid.
On the other hand, if K < 2, the system possesses no
density quasi-long-range order, and can be regarded either
as a a glassy insulator or a superfluid (i.e., featuring off-
diagonal quasi-long-range order), with a different degree of
robustness against disorder or an external potential, depend-
ing on the value of K (a more precise classification is not
necessary for the purpose of this work, as will be shown
below). Henceforth, we shall be using the adjectives super-
fluid and crystalline in this sense.
The zero-temperature phase diagram of 4He in 1D has

been extensively studied theoretically. The equilibrium
phase is a very low density, weakly self-bound superfluid,
which transitions to a crystalline phase at higher density
[6]. Of at least equal interest is the physics of p-H2 in 1D,
for several reasons, both fundamental as well as practical.
Parahydrogen molecules are spin-zero bosons of mass half
of that of 4He, leading to the speculation that p-H2 could be
a potential superfluid at low T. There is strong experimen-
tal and theoretical evidence suggesting that, while a small
cluster of p-H2 may indeed display superfluid properties at
low T [13–16], no fluid phase of p-H2 can be stabilized at
T ¼ 0, either in three or in two dimensions [17]. Rather,
the only thermodynamically stable phase is a (nonsuper-
fluid) crystal, due to the strength of the attractive well of
the intermolecular potential. It has been claimed, however,
that in 1D p-H2 might be a Luttinger superfluid [7]. This
would be a potentially important result, as one could con-
ceivably explore ways of achieving three-dimensional
superflow of p-H2 through a network of interconnected
quasi-1D channels [11], for example, in a porous glasses
such as Vycor. It should also be noted that the study of
p-H2 in reduced dimensions also has potential technologi-
cal relevance, given the current interest in the storage of
hydrogen in nanostructures, e.g., carbon nanotubes, for
fueling purposes [18].
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In this Letter, we study the zero-temperature phase
diagram of p-H2 in 1D, by means of first-principle quan-
tumMonte Carlo simulations at finite temperature. We first
extrapolate computed energy estimates to T ¼ 0, thereby
obtaining the equation of state, and then characterize the
phases of the system as a function of linear density through
the long-range behavior of the pair correlation function
gðrÞ, which is directly accessible by simulation, without
uncontrolled approximations.

The main result of this study is that the phase diagram of
p-H2 in 1D mimics that of the system in two and three
dimensions. The equilibrium phase is a crystal, i.e., a phase
featuring slowly decaying oscillations in the pair correla-
tion function, with a value of the Luttinger parameter K �
3:5, increasing at higher density. The system possesses
quasi-long-range order even at negative pressure, i.e.,
below the equilibrium density, all the way down to the
spinodal. No evidence of any other phase is observed (nor,
obviously, of any quantum phase transition). Thus, the
physics of the system is qualitatively different from that
of 4He in 1D. This is in striking disaccord with what was
claimed in the only previous study of p-H2 in 1D (Ref. [7]).
We attribute the incorrect physical conclusion reached
therein to the approach utilized, focusing on the energy
rather than on the quantities of relevance, namely, corre-
lation functions.

We model our system of interest as a collection of N
p-H2 molecules, regarded as pointlike, moving in a 1D
region of length L, with periodic boundary conditions. The
many-body Hamiltonian is the following:

Ĥ ¼ ��
X

i

@2

@x2i
þX

i<j

VðrijÞ; (2)

where � ¼ 12:031 K �A2 and rij � jxi � xjj. The linear

density is � ¼ N=L. For consistency with previous calcu-
lations, we choose the well-known Silvera-Goldman po-
tential [19] to model the interaction V between a pair of
p-H2 molecules. We computed low-temperature thermo-
dynamics for the system described by Eq. (2) by means of
quantum Monte Carlo simulations at finite temperature,
based on the Worm algorithm in the continuous-space path
integral representation. This methodology allows one to
compute numerically exact estimates of thermodynamic
quantities for Bose systems at finite T. Its most important
quality in this work is that it grants access to the pair
correlation function, which can be obtained in an unbiased
way. Details of the simulation are standard [20–22]. We
have carried out simulations of a system described by the
above microscopic Hamiltonian, comprising N ¼ 30, 60,
and 120 particles, respectively.

We begin by discussing the low-temperature energetics,
specifically the T ¼ 0 equation of state of 1D p-H2. All
energy results reported here are extrapolated to the ther-
modynamic (N ! 1) limit; no difference is seen between
energy estimates obtained for N ¼ 60 and N ¼ 120,

within statistical uncertainties. Moreover, results shown
correspond to a temperature T ¼ 0:25 K, but they should
be regarded as ground state estimates, as thermal averages
remain unchanged below T ¼ 0:5 K. Figure 1 shows the
energy per molecule computed as a function of the linear
density �; Table I reports a few representative values,
comparing them to the corresponding estimates from
Ref. [7], where a ground state study of the system was
carried out based on diffusion Monte Carlo (DMC) simu-
lations with the same Hamiltonian and pair potential. A
polynomial fit to the data yields an equilibrium density

�e ¼ 0:2178� 0:007 �A�1 and a spinodal density �s ¼
0:209� 0:001 �A�1. Although our ground state energy
estimates are consistently lower than those of Ref. [7]
(by small but not insignificant amounts), our estimates of
the equilibrium and spinodal densities are in agreement
with theirs. The disagreement lies in the characterization of
the phase(s) of the system, as we show below by means of
an examination of the pair correlation function.
Figure 2 shows the pair correlation function gðrÞ, com-

puted at low temperature, for 1D p-H2 at a linear density
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FIG. 1 (color online). Ground state energy per molecule (in K)
computed by quantumMonte Carlo simulations for 1D p-H2 as a
function of the linear density � (in �A�1). Dashed line is a
polynomial fit to the data. When not shown, statistical errors
are smaller than the size of the symbols.

TABLE I. Ground state energy per molecule (in K) for 1D
p-H2 at various linear densities � (in �A�1), extrapolated to the
thermodynamic limit. Also shown for comparison are ground
state estimates from Ref. [7]. Statistical errors, in parentheses,
are on the last digit(s).

� This work Reference [7]

0.220 �4:916ð15Þ �4:834ð7Þ
0.240 �3:974ð28Þ
0.265 1.661(21)

0.290 18.37(7) 19.203(10)

0.329 94.37(4) 97.963(16)
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� ¼ 0:210 �A�1, i.e., well below the equilibrium density, at
the lower edge of the region of metastability. According to
the LLT, in the T ! 0, L ! 1 limit, the physical proper-
ties of the system depend only on the product LT. Data
shown in Fig. 2 pertain to two physical systems, one
comprising N ¼ 60 particles at a temperature T ¼ 0:5 K,
the other with N ¼ 120 and at T ¼ 0:25 K. Within the
statistical uncertainties of the calculations, the data fall on
the same curve, as expected. We have observed this scaling
behavior at all linear densities considered here, at these two
temperatures.

In order to determine the value of the Luttinger parame-
ter K, we can fit the data at large r to the expression (1), or,
which is easier, fit the maxima of the oscillating function to

fðrÞ ¼ 1þ A=r2=K, with A andK fitting parameters. In this
case, the procedure yields K ¼ 2:06� 0:02, i.e., a value
only barely above 2, but already in the crystalline sector, as
described by LLT.

On increasing the linear density, the physics does not
change qualitatively, K increases monotonically; i.e., the
crystalline nature of the ground state is enhanced as the
system is compressed. For example, close to the equilib-

rium density, at � ¼ 0:22 �A�1, it is K ¼ 3:5� 0:1, i.e.,
well in the crystalline side of the LLT. Results for this case
are displayed in Fig. 3. Although, as the linear density
increases, obtaining an accurate estimate of K becomes
more difficult, because the decay of the oscillation is
slower, nonetheless the expected monotonic increase of
K is readily established. For example, K � 10 at

� ¼ 0:265 �A�1.
There is therefore no evidence of any quantum phase

transition in the entire domain of existence of a

thermodynamically (meta)stable uniform phase. Indeed,
within the known and well-understood differences that
the reduction of dimensionality entails, the ground state
phase diagram of 1D p-H2 is qualitatively identical to that
in 2D and 3D; i.e., only a crystalline phase is present. This
physical conclusion constitutes another strong piece of
evidence that prospects of observing superfluid behavior
in p-H2 (or anything that could be meaningfully regarded
as such) are dim, as the tendency to crystallize remains
strong, even when the system is maximally confined. Such
a phase diagram is very different from the case of 4He,
whose equilibrium phase in 1D is indeed a Luttinger
superfluid, and which undergoes a quantum phase transi-
tion to a crystal at high density.
As mentioned in the introduction, the first calculation of

the equation of state of p-H2 in 1D was carried out in
Ref. [7]. The statement was made therein that the equilib-
rium phase is a liquid, and that a quantum phase transition
between a liquid and a crystal takes place at a density ��

close to 0:312 �A�1. In contrast, no evidence whatsoever of
any phase transition is seen in this work, and certainly
nowhere near ��, at which the system is in fact a ‘‘hard’’
crystal. A (quasi)crystalline phase is the only one observed
in this work, at and below the equilibrium density, all the
way to the spinodal (below which it is actually observed in
the simulation to break down into crystal clusters).
Obviously, it is necessary to examine this disagreement
in detail and identify its origin, as both the calculations
carried out in Ref. [7] and here are based on the same
microscopic Hamiltonian and employ numerical tech-
niques which should yield compatible results, within sta-
tistical errors. As we argue below, the disagreement arises
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FIG. 3 (color online). Pair correlation function gðrÞ for 1D
p-H2 at a linear density � ¼ 0:22 �A�1. Two sets of data are
displayed, one pertaining to a simulation at temperature T ¼
0:5 K, for a system comprising N ¼ 60 particles (circles),
and one at T ¼ 0:25 K and N ¼ 120 (triangles). Statistical
errors are smaller than symbols. Dashed line is a fit to the
maxima of the functions obtained with the expression fðrÞ ¼
1þ A=r2=K , with the Luttinger parameter K ¼ 3:5ð1Þ.
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FIG. 2 (color online). Pair correlation function gðrÞ for 1D
p-H2 at a linear density � ¼ 0:21 �A�1. Two sets of data are
displayed, one pertaining to a simulation at temperature T ¼
0:5 K, for a system comprising N ¼ 60 particles (circles), and
one at T ¼ 0:25 K and N ¼ 120 (triangles). Statistical errors are
smaller than symbols. Dashed line is a fit to the maxima of the
functions obtained with the expression fðrÞ ¼ 1þ A=r2=K, with
the Luttinger parameter K ¼ 2:06ð2Þ.
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not from differences in the numerical data, which exist but
are relatively unimportant, but rather from their physical
interpretation.

The physical conclusion of Ref. [7] was reached by
comparing ground state energy estimates yielded by a
DMC calculation in which two different initial trial wave
functions were utilized, a fluidlike, enjoying translational
invariance, and a solidlike, in which p-H2 molecules are
pinned at lattice positions. On carrying out DMC projec-
tions based on these two Ansätze, it was found that the
energy estimate arrived at by starting from a liquidlike
initial Ansatzwas lower (higher) than that obtained starting
from the solidlike trial wave function for � < �� (� > ��).
This was interpreted as evidence of a liquidlike ground
state for � < ��, and crystalline for � > ��.

A few comments are in order here. The first is that the
determination of phase boundaries through a comparison
of ground state energy estimates yielded by DMC simula-
tions using different trial wave functions might be concep-
tually justified when the various Ansätze are orthogonal to
each other, reflecting the different physical pictures that
they describe. Its use for a Bose system is puzzling, espe-
cially in 1D where no sharp differences exist between
liquid and solid phases. The ground state wave function
of a Bose system is positive definite, and therefore, in
principle, a DMC projection starting from any non-
negative trial many-body wave function (as are both
Ansätze utilized in Ref. [7]) should converge to the same
value, given a sufficiently long projection time. Different
energy expectation values obtained with different non-
negative trial wave functions in a finite projection time
are far more likely to be the consequence of a poorer
relative optimization of one wave function with respect
to the other, as well as of sampling and/or population size
bias issues [23], than to have a genuine physical origin.

Looking at the data in Table I one can see that the ground
state estimates of Ref. [7] are consistently above the ones
obtained here; at the highest densities, the difference
between the value reported here and that of Ref. [7] is an
order of magnitude greater than that between the estimates
yielded by the DMC projection with the two different
Ansätze (Table I of Ref. [7]), a fact clearly pointing to
failure to achieve convergence to the true ground state with
either starting trial wave function.

More importantly, the energy is not the relevant quantity
at which to look, in order to assess the physical nature of a
many-body state. Rather, as mentioned in the introduction,
the long-range behavior of structural correlation functions,
such as the pair correlation function considered here, or the
off-diagonal one-body density matrix, contain in 1D all the
information required to characterize the system. The long-
distance behavior of either one of these quantities was not
examined at all in Ref. [7], ostensibly on the assumption
that it would largely mimic that built into the trial wave
function. There is in principle no reason, however, why the

projection algorithm should not build the kind of long-
range, slowly decaying correlations that are observed here,
even if they are missing in the initial trial wave function.
Only on the basis of such correlations can any statement be
made about the nature of the ground state. A limitation of
DMC simulations, of course, is that unbiased expectation
values of quantities other than the energy are generally
difficult to obtain [24]. Indeed, empirical evidence is
mounting that finite-temperature techniques are a better
option to investigate the ground state of Bose systems.
In summary, we have computed the ground state equa-

tion of state of p-H2 in 1D, and found that the phase
diagram of the system mimics qualitatively that in 2D
and 3D, namely, only the phase is present. Whereas in
2D and 3D such a phase is a crystal in a strict sense, in
1D it possesses crystalline quasi-long-range order as
defined in the context of Luttinger theory. No evidence of
any superfluid phase, again as defined within LLT, is seen,
including metastable ones.
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