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Fluids subjected to suitable forcing will exhibit turbulence, with characteristics strongly affected by the

fluid’s physical properties and dimensionality. In this work, we explore two-dimensional (2D) quantum

turbulence in an oblate Bose-Einstein condensate confined to an annular trapping potential.

Experimentally, we find conditions for which small-scale stirring of the condensate generates disordered

2D vortex distributions that dissipatively evolve toward persistent currents, indicating energy transport

from small to large length scales. Simulations of the experiment reveal spontaneous clustering of same-

circulation vortices and an incompressible energy spectrum with k�5=3 dependence for low wave numbers

k. This work links experimentally observed vortex dynamics with signatures of 2D turbulence in a

compressible superfluid.
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A distinction between hydrodynamic turbulence [1] in a
bulk fluid and in one whose flows are restricted to two
dimensions is that energy dissipation at small length scales
is inhibited in the latter. In two-dimensional (2D) flows
subject to small-scale forcing, energy flux toward shorter
scales is suppressed and, instead, kinetic energy is trans-
ported toward larger scales. These dynamics lead to the
well-known inverse energy cascade [2,3]. Small-scale forc-
ing may thus generate large-scale flows in effectively 2D
fluids, as seen, for instance, in atmospheric strata [4],
electrolyte solutions and toroidal plasmas [5], and
Jupiter’s Great Red Spot [6,7]. However, analogous char-
acteristics involving vortex distributions [8] and energy
spectra of 2D turbulence in quantum fluids are less clear:
2D quantum turbulence (2DQT) has only recently been
addressed theoretically [9–17], while an experimental
demonstration of 2DQT has remained elusive.

Here, we study an atomic Bose-Einstein condensate
(BEC), a compressible superfluid, in a joint experimental
and numerical investigation of forced and decaying 2DQT.
We demonstrate that 2DQT is readily generated in BECs
and that the disordered vortex distributions of 2DQT can be
robust against immediate vortex-antivortex annihilation.
Our primary result is evidence that quantum-fluid analogs
of three key characteristics of classical 2D turbulence
can simultaneously appear in 2DQT: (i) emergence of
disordered vortex distributions following small-scale forc-
ing, decaying into large-scale flow as manifested by a
persistent current, seen experimentally and numerically;
(ii) formation of coherent vortex structures, observed nu-
merically; and (iii) an incompressible kinetic energy

spectrum with k�5=3 dependence for wave numbers k lower
than that of the forcing, observed numerically.
To experimentally generate 2DQT, we utilize optical and

magnetic confinement to create highly oblate BECs [18]. A
harmonic potential with radial (r) and axial (z) trapping
frequencies ð!r=2�;!z=2�Þ ¼ ð8; 90Þ Hz confines BECs
of up to �2� 106 87Rb atoms, with radial and axial
Thomas-Fermi radii ðRr; RzÞ ¼ ð52; 5Þ �m and chemical
potentials �0 � 8@!z. For these conditions, vortex bend-
ing and tilting are suppressed [19], enabling 2D vortex
dynamics [20]. Additionally, a 23-�m, 1=e2-radius, blue-
detuned Gaussian laser beam is directed axially through
the trap, creating an annular trap with a central barrier of
height�1:5�0. At time t ¼ 0, a magnetic bias field moves
the harmonic trap center, but not the barrier, in a
5:7-�m-diameter circle over 333 ms. This motion induces
nucleation of numerous vortices in a highly disordered
distribution, identified with 2DQT much as the notion of
a ‘‘vortex tangle’’ is identified with 3D quantum turbulence
[21–24]. The BEC then remains in the annular trap for a
variable hold time th � 50 s while the 2DQT decays. The
barrier is then ramped off over 250 ms, and the BEC is
released from the trap to ballistically expand, enabling the
absorption imaging of vortices. Figure 1 illustrates this
sequence.
Two experimental sequences of poststir dynamics are

shown in Figs. 2(a) and 2(b), revealing the microscopic
variability of vortex distributions. From the data, we dis-
cover the following new regimes of vortex dynamics. First,
small-scale stirring generates numerous (> 20) vortices,
which are then rapidly distributed, creating a disordered
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distribution associated with 2DQT by the end of the stir
(th ¼ 0 ms). Second, vortex decay rates via annihilation
and damping are slow compared with stirring times. Third,
the vortex cores maintain high visibility, indicating that
vortices remain aligned along the trap’s axial direction and
that the BEC’s velocity field and vortex dynamics are 2D
despite the fluid’s 3D nature, Kelvin wave dynamics being
suppressed for our 2D forcing and trap anisotropy [19].

A fourth phenomenon is the stable pinning [25] of
vortices at the central barrier accompanying the 2DQT
decay, indicated by the large fluid-free hole in the
expanded BEC’s center for th > 0:33 s. By th � 8:17 s,
after the 2DQT has decayed, we observe that a persistent
current has formed, visible for up to th ¼ 50 s. By ramping
off the central barrier prior to BEC expansion, pinned

vortices are released into the BEC [26,27], permitting
their imaging. An optional 3-s hold before expansion
gives the vortices time to separate, allowing determination
of the persistent current winding number [26] (see the
Supplemental Material [28]). Our data show that the
persistent current forms during the dissipative vortex dy-
namics, rather than being directly created by the stirring
process. In interpreting this phenomenon, we note the
following. First, prior to stirring, the system is stationary;
thus, the rotating trap mode that corresponds to the even-
tual annular superflow is initially unpopulated. Second,
stirring injects kinetic energy at small scales (discussed
below) but does not inject energy directly into the large-
scale rotating trap mode that corresponds to the persistent
current. Although stirring is responsible for the injection of
angular momentum, which is initially embedded in the
vortex distribution, the macroscopic rotation emerges
from the subsequent vortex dynamics. We interpret the
emergence of annular superflow as an experimental signa-
ture of energy transport from small to large length scales
during 2DQT forcing and decay.
The decay of 2DQT is not necessary to create annular

superflow, as methods for direct BEC persistent current
creation have been demonstrated elsewhere [26,29,30].
The decay of 2DQT in an annular trap is also not sufficient
to guarantee the formation of a persistent current, and an
important parameter of our experiment is the BEC tem-
perature, on which the superfluid dynamics strongly
depend. Prior to forcing, the initial temperature is T �
0:9Tc, where Tc � 116 nK is the BEC phase-transition
temperature. We choose this relatively high temperature
so that the acoustic energy generated by the forcing under-
goes efficient thermal damping. We find that for tempera-
tures much above this value, most vortices quickly decay,
while much lower temperatures inhibit the establishment
of a persistent current. By th ¼ 1:17 s, most of the vortices
have become pinned to the central barrier or have left the
system by annihilation and damping. At this time, we
reduce the temperature to �0:6Tc by additional evapora-
tive cooling in order to decrease rates of further thermal
damping. The temperatures used during the forcing and
decay stages were experimentally chosen to optimize per-
sistent current formation from 2DQT decay. The role of
dissipation has elsewhere been shown to be important in
the development of a turbulent energy spectrum [16,31],
and we return to this topic and aspects of system dimen-
sionality near the end of this Letter. Our experiment thus
demonstrates that under suitable conditions of system ge-
ometry, forcing, and dissipation, a disordered 2D vortex
distribution can form and dissipatively evolve into a large-
scale flow. These experimental results establish atomic
BECs as a promising platform for further studies of
2DQT. Nevertheless, measuring energy spectra and vortex
dynamics remain forefront experimental challenges, moti-
vating us to utilize numerical modeling and analysis to

FIG. 2. (a,b) 200-�m-square experimental column-density im-
ages acquired at the hold times th indicated. BECs undergo
�50-ms ballistic expansion immediately after barrier removal.
Each image is acquired from a separate experimental run.
(c) In situ numerical data (96-�m-square images) for the hold
times indicated. See also Movie S1 in the Supplemental Material
[28]. For each state represented in (c), ramping off the laser
barrier in 250 ms gives the data shown in (d).

FIG. 1. (a) Timing sequence. (b,c) In situ BEC column-density
images prior to the stir, shown (b) in the plane of 2D trapping and
(c) along the z axis. Lighter shades indicate larger column
densities, as in subsequent data. (d) Stirring illustration. The
black arrow shows the trap center trajectory relative to the larger
fluid-free region created by the laser barrier. (e) In situ BEC
image 10 s after stirring.
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investigate these characteristics of 2DQT in a stirred and
trapped BEC.

Weakly interacting BECs admit a numerically tractable
first-principles theoretical approach, across a broad range
of temperatures, that has compared favorably and quanti-
tatively with experiments [32]. The physical system con-
sists of a large noncondensate component close to thermal
equilibrium and a BEC responding to both external forc-
ing and damping by the noncondensate component.
Numerically, we focus on the BEC dynamics, simulating
the experimental procedure using damped Gross-Pitaevskii
theory [28,33].

Figure 2(c) and Movie S1 in the Supplemental Material
[28] show results from simulations that correspond to
experimental conditions. We see that vortices are rapidly
generated near the inner BEC boundary and subsequently
dispersed, with some becoming pinned to the central bar-
rier. At th ¼ 8:17 s, three vortices are pinned. Consistent
with experimental observations, we find that over the first
few seconds of evolution after the stir ends, large-scale
azimuthal flow and hence a persistent current steadily build
due to the redistribution of vortices rather than being
directly imprinted by the stir; see Fig. S1 [28]. Ramping
off the barrier in the simulation over 250 ms gives the
column densities shown in Fig. 2(d), with disordered vor-
tex distributions qualitatively similar to Figs. 2(a) and 2(b).
The development of superflow by th ¼ 8:17 s in Fig. 2(c)
leads to a large region of low density in the trap center after
barrier ramp-down, as seen in Figs. 2(a), 2(b), and 2(d).
The mean number of vortices (pinned and free) for th ¼
23 s is 3.5 in the experiment and 5 in the simulation. For
th ¼ 43 s, these values decline to 2.5 and 3, respectively.

Energy spectra and vortex distribution [8] analyses fur-
ther characterize 2DQT. To examine the dependence of the
kinetic energy on k at any time, we use techniques of
previous studies [10–13,34] for extracting EiðkÞ, the
portion of a BEC’s kinetic energy spectrum corresponding
to an incompressible superfluid component, derived by
extracting the divergence-free density-weighted velocity
field that embeds vorticity [35]. The curl-free part of this
field embeds acoustic energy, which reaches a maximum
value equivalent to 40% of the total incompressible energy
halfway through the stir, dropping to less than 20% by the
end of the stir and for subsequent times.

The spectra of Fig. 3 are obtained from various times of
the simulation and calculated using spatial grids of 18112

points separated by �=4 ¼ 0:1 �m, where � ¼ 0:42 �m
is the healing length at peak density. Each curve shows the
spectrum of a 2D slice through z ¼ 0, although the spectra
are only negligibly changed by averaging over slices. As

stirring injects kinetic energy into the system, a k�5=3

power-law spectrum develops in the k < ks � ��1 region.
Remarkably, this power law is consistent with
Kolmogorov’s analysis of turbulence spectra [36] in spite
of the fact that the ideal conditions of isotropic and

homogeneous turbulence are not satisfied in the present
case. For 2DQT, this spectrum is determined by the vortex
configuration [14]. This spectrum spans a decade in k space
and is established by the end of the stir, which is also when
total incompressible kinetic energy is maximal. Poststir,
Fig. 3 (inset) indicates a slow loss of energy with approxi-

mate preservation of the k�5=3 power law. Eventually, the
system populates the mode associated with a persistent
current with three units of circulation.
The logarithmically bilinear spectrum is a robust dy-

namical feature, with the ultraviolet (large k) EiðkÞ / k�3

dependence emerging once vortices are present. Because
the fluid’s compressibility determines the vortex core
structure, this portion of the spectrum is a universal prop-
erty of isolated quantized vortices in a compressible 2D
quantum fluid, occurring for k > ks [14]. This ultraviolet
power law only plays a role in the energy spectrum through
its amplitude, which is proportional to the total vortex
number. For k� ks, fluid compressibility provides a
mechanism for the conversion of vortices into sound [14]
(see the Supplemental Material [28]). Conservation of ens-
trophy (mean-squared vorticity) is therefore complicated
by vortex-antivortex annihilation, since in 2DQT, enstro-
phy corresponds to vortex number [11,14]. The flux of
kinetic energy from large to small k that would lead to

the development of a k�5=3 power law in this system is thus
not a priori expected. Logarithmically bilinear spectra are
also obtained after ramping off the central barrier, indicat-
ing that these spectra are robust and that an annular ge-

ometry is not a necessary element of k�5=3 spectra in
2DQT.

FIG. 3 (color). Log-log plots of EiðkÞ (per atom) vs k� during
forcing, for the times indicated. Vertical dashed lines indicate kT ,
kF, ks, and k�, defined in the text. The straight red and blue lines

indicate EiðkÞ / k�5=3 and k�3, respectively. Inset: Log-log plot
of EiðkÞ vs k� (labels omitted) for decaying 2DQT. Straight lines
show EiðkÞ / k�5=3 and k�3. From top to bottom, the remaining
three curves show EiðkÞ at 331 ms, after 14 s of free decay, and
for a charge-three persistent current.
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Three additional wave numbers are indicated in Fig. 3.
The cross-sectional radial thickness of the toroidal BEC
approximately corresponds to the length scale 25 �m ¼
2�=kT . At high wave numbers, k� ¼ 2�=� corresponds to

the approximate size of the smallest features supported by
a BEC. In an isotropic BEC, � is roughly the distance from
the vortex core center to a location at which the density is
approximately half its bulk value. Finally, a wave number
kF is associated with a forcing scale. In the classical theory
of 2D turbulence [3], spectrally localized forcing is related
to the injection rates of enstrophy (�) and energy (�)

density via kF ¼ ffiffiffiffiffiffiffiffiffi

�=�
p

[1]. We estimate kF from the
computed changes in total incompressible kinetic energy
�Ei � 2:9� 10�3�0N and enstrophy �� � 0:963�
10�3�0N=�2 occurring between 181 and 208 ms (see the

Supplemental Material [28]). We find kF � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��=�Ei
p ¼

0:57��1 ’ 2�=ð11�Þ, shown in Fig. 3, and see that this
scale coincides with a spectral peak that appears near k��
2�=11 at 181 ms. The peak disperses by 208 ms when
the spectrum is already approximately logarithmically
bilinear. We therefore interpret kF as an approximate
forcing-scale wave number.

The physical mechanism for the injection of energy and
vorticity into our BECs involves coupling between pairs
of opposite-circulation vortices and acoustic energy.
Empirically, we find that the length scale �2�=kF coin-
cides with the separation of phase singularities created
from the decay of localized sound pulses into vortex
dipoles, visible in Movie S1 [28]. We find analytic evi-
dence (see the Supplemental Material [28]) for the efficient
energy and enstrophy transfer from the compressible to the
incompressible fluid components for wave numbers kF &
k & ks, supporting the interpretation that forcing occurs
near kF.

The spatial clustering of same-circulation vortices is a
key characteristic of 2DQT, first discussed by Onsager [8].
More recently, vortex clusters in 2DQT have been exam-
ined in order to better understand their contributions to
kinetic energy spectra and as analogs of the coherent
vortices of classical 2D turbulence [14]. Vortex clustering
is amenable to quantitative analysis, as discussed in
Refs. [14,16,37]. Although these measures apply to 2D
vortex distributions in homogeneous superfluids, we apply
the algorithm described in Ref. [16] to estimate the degree
of vortex clustering in our results, noting that we must
neglect corrections due to the system geometry and density
inhomogeneities (see the Supplemental Material [28]).
During the 300-ms period after the stir, we observe four
tightly bound two-vortex clusters, visible in Movie S1 [28].
Applying the cluster algorithm of Ref. [16], some of these
pairs appear as elements of larger clusters. Figure 4 shows
the identified vortex dipoles and clusters for three times
immediately before and after the stir ends. The two-vortex
cluster indicated by the dashed red line in the rightmost
plot exists for 630 ms. These vortices orbit each other 15

times, travel together halfway around the BEC, and even-
tually dissociate upon colliding with a vortex dipole; see
Movie S1 [28]. At the end of the stir, the fraction of free
vortices involved in clusters is �0:65, whereas this mea-
sure would be 0.5 for a completely uncorrelated vortex
distribution and well below 0.5 for a system dominated by
vortex dipoles [38]. We conclude that vortices are likely
not randomly distributed and that vortex clustering dy-
namically occurs during forcing and is maintained even
after forcing stops.
We have also performed experiments and simulations to

further explore the roles of dissipation and dimensionality.
Similar experiments in oblate traps with !z : !r ¼ 2:1
showed substantially fewer vortices generated initially
and a rapid decrease of vortex visibility likely due to vortex
annihilation, damping, and bending. The trap oblateness
and the stirring still retain aspects of 2D superfluid dynam-
ics, and experimental parameters were found for which
persistent currents were formed, suggesting that a wider
range of conditions may be suitable for 2DQT studies. To
probe the consequences of stirring in a spherically symmet-
ric (!r ¼ !z) trap, we performed simulations using stirring
and dissipation parameters comparable to the highly oblate
case. Here, however, we observed neither vortices nor a
persistent current (see the SupplementalMaterial [28]), and
instead the BEC rapidly returns to nonrotating equilibrium.
Without dissipation, vortices are not nucleated, and the 3D
BEC develops a transverse sloshingmode in response to the
stir. We also simulated the stir sequence for the highly
oblate system, but without dissipation. Vortex nucleation
and short-time dynamics are qualitatively comparable to the
dissipative calculation, with the notable difference that
thermalization occurs in the nonlinear Gross-Pitaevskii
equation evolution via coupling between vortices and the
sound field, a consequence of compressibility. The time
scale of persistent current formation is much longer than
that of our dissipative simulations and experiments. We
infer that 2D vortex dynamics and dissipation are both
required for small-scale forcing to efficiently produce
large-scale flow in the annular trap.

FIG. 4 (color online). Numerical 96-�m-square column-
density plots shown for times after the start of the 333-ms stir.
Solid blue (dashed red) ovals indicate clusters of same-sign
vortices counterrotating (corotating) with the stir direction.
Vortex dipoles are indicated by shaded green ovals. Unlabeled
vortices are not identifiable as part of a dipole or cluster. See
Fig. S4 in the Supplemental Material [28] for phase plots.
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While previous numerical 2DQT studies have investi-
gated energy spectra and vortex dynamics, relationships
with classical 2D turbulence are still not well established
due in part to a lack of experimental correspondence. Here,
we experimentally and numerically find that even a small,
trapped, compressible superfluid can display characteris-
tics analogous to those of classical 2D turbulence, suggest-
ing a broader view of the universality of 2D turbulence.
Regarding the possibility of a compressible superfluid
supporting an inverse energy cascade, energy fluxes pro-
vide the most direct route to identifying cascades; while
this remains an open problem for trapped BECs [12], there
is numerical evidence for inverse cascades in 2DQT [16].
Our observations are also consistent with energy transport
from small to large length scales near the end of the stir:
(i) infrequent vortex dipole recombination indicates that
there is little dissipation over a forcing range kF to ks;
(ii) EiðkÞ / k�3 for k > ks, a range that cannot support
energy flux [14]; (iii) in conjunction with vortex clustering,
kinetic energy spectral developments occur primarily for

k < ks; (iv) EiðkÞ / k�5=3 for k < ks, a signature of an
inertial range; and (v) energy accumulates in a large-
scale mode that was unpopulated prior to small-scale
forcing. These observations motivate further investigations
of 2DQT, with future work focusing on energy fluxes,
dissipation, inhomogeneities, and direct experimental
observations of vortex dynamics.
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